
Problems

CodeWars 2018
Barcelona Problems

3

Problem Points

1 Savings for the Fallas 1

2 Printing books 1

3 To be able or not to be able. That is the question. 2

4 How old are you? 2

5 Storytelling 2

6 It’s the final countdown 3

7 Which graphics card should I buy? 3

8 Run, Forrest, run! 3

9 3D Coffee 4

10 Triathlon timing 4

11 Character counting 4

12 Tracking student’s progress 5

13 Quadratic equation solver 5

14 Power of 2 6

15 Not-allowed-entry-charset 6

16 Emirp numbers 7

17 Magic sum 10

18 Space battleship 10

19 Cross-stitch 12

20 Car race 12

21 Game of life 15

22 Nested triangles 15

23 Matrix Code 15

24 Ancient formulas 15

25 Secret door 15

26 Skiing 20

27 Digital castellers 20

28 Meowy’s Island 20

29 Hexagons 23

30 Maze 23

31 Keyboard 30

5

1 Savings for the Fallas
1 point

Introduction
Ana wants to know how much money she will spend to travel from Barcelona to Valencia to enjoy the
“Fallas”. She only has a few days to continue saving money to go. Ana will send you a list with the prices
of the train tickets. The first line will be the one-way ticket and the second will be the return ticket.
Please, can you tell her how many euros she should save?

Come on, help Ana!

Input
The input consists of two integers in two lines:
<One-way ticket cost>
<Return ticket cost>

Output
Print out the total of euros that should save following this output format:
Ana should save a total of <total euros> euros.

Example

Input
50
35

Output
Ana should save a total of 85 euros.

Solutions

Python3

a=int(input())
b=int(input())
print("Ana should save a total of " + str(a+b) + " euros.")

6

C++

#include <iostream>

using namespace std;

int main(){
 int oneWayTicket, returnTicket;
 cin >> oneWayTicket >> returnTicket;

 cout << "Ana should save a total of "
 << (oneWayTicket+returnTicket)

 << " euros." << endl;
}

7

2 Printing books
1 point

Introduction
To earn some extra money, you decide to start working in a printing house. In your first day, you realize
the boss looks worried. He should print lots of copies of a book (it’s a best-seller!) and he doesn’t know
how many ink cartridges will remain after printing all the copies. The boss knows that he needs 3 ink
cartridges for each book and he has written in a paper the number of books to print and the number of
cartridges stored in the warehouse. Using your programming skills, try to help the boss ensure that
there are always enough ink cartridges in the warehouse to print all the books.

HINT: Consider that there will be always enough ink cartridges in the warehouse.

Input
The input consists of two integers in two lines:
<Number of books to print>
<Number of ink cartridges available in the warehouse>

Output
Print the number of remaining cartridges after printing all the books.

Example

Input
10
80

Output
50

Solutions

Python3

carts_per_book=3
books=int(input())
ink_carts=int(input())
print(ink_carts – books * carts_per_book)

8

C++

#include <iostream>

using namespace std;

int main(){
 int booksToPrint, inkSupplies;
 cin >> booksToPrint >> inkSupplies;

 cout << (inkSupplies - (booksToPrint*3)) << endl;
}

9

3 To be able or not to be able. That is the question.
2 points

Introduction
Ana wants to buy a new house but she doesn’t know if she has enough money. She will tell you how
many euros she has saved, and how many euros the house costs. Can you help her to decide if she has
enough money to buy the new house?

Come on, help again Ana!

Input
The input consists of two integers in two lines:
<Ana’s savings>
<Cost of the new house>

Output
Print out the one of the following outputs once you confirm Ana is able or not to buy a new house:
Ana can buy the house !!
Ana can NOT buy the house :(

Example 1

Input
500000
300000

Output
Ana can buy the house !!

Example 2

Input
50000
300000

Output
Ana can NOT buy the house :(

10

Solutions

Python3

savings = int(input())

cost = int(input())

if(savings >= cost):

 print("Ana can buy the house !!")

else:

 print("Ana can NOT buy the house :(")

C++

#include <iostream>

using namespace std;

int main(){

 int totalSavings, totalCost;

 cin >> totalSavings >> totalCost;

 if (totalSavings >= totalCost)

 cout << "Ana can buy the house !!" << endl;

 else

 cout << "Ana can NOT buy the house :(" << endl;

}

11

4 How old are you?
2 points

Introduction
The actual definition of a year is the time it takes to a planet to complete a single orbit around the Sun.
That is, here on Earth, we consider a year to be 365 days.

But if you were to live in another planet of our Solar System – a year would work out to something else.
Fortunately, we have a simple table to get the equivalence in Earth days of any planet’s year.

Planet Revolution period in Earth
days

Mercury 88
Venus 225
Earth 365
Mars 687

Jupiter 4333
Saturn 10759
Uranus 30689

Neptune 60182

Since we plan to travel around the Solar System it is important to have conversion software to know
the Earth age of the interplanetary travelers. Can you provide an easy way to convert the age expressed
in years in a given planet to its value in Earth years?

Input
The input consists of two lines. The first line is an integer indicating your current age in years in the
planet where you live. The second line is a string with the name of the planet where you live.
<Current age in years in the planet where you live>
<Name of the planet where you live>

Output
Print out your age in Earth years as an integer value.

Example

Input
10
Mars

Output
18

12

Solutions

Python3

list = dict([("Mercury",88), ("Venus",225),

 ("Earth",365), ("Mars",687),

 ("Jupiter",4333), ("Saturn",10759),

 ("Uranus",30689), ("Neptune",60182)])

age = int(input())

planet = input()

earthAge = (age * list[planet])//365

print(earthAge)

C++

#include <iostream>

#include <map>

#include <string>

using namespace std;

map<string, int> planet_days = {

 {"Mercury", 88}, {"Venus", 225},

 {"Earth", 365}, {"Mars", 687},

 {"Jupiter", 4333}, {"Saturn", 10759},

 {"Uranus", 30689}, {"Neptune", 60182}

};

int main(){

 int age;

 string planet;

 cin >> age >> planet;

 int total_days = planet_days[planet]*age;

 int earth_age = total_days/planet_days["Earth"];

 cout << earth_age << endl;

}

13

5 Storytelling
2 points

Introduction
A storyteller has been told that nowadays the stories must be dynamic, so he wants to create a program
that everybody could use. This program would have a static storyline and a dynamic part, where the
reader would introduce his personal information: name, age, gender, city, favourite sport, favourite
team and its ideal job.

 HINT: Beware of the gender (boy/girl) and the consequent changes derived.

This is the static storyline:

Name is a age year-old gender. Pronoun is living with possesive pronoun parents in an apartment in
the centre of city, where pronoun hangs out with possesive pronoun friends. Moreover, in possesive
pronoun free time pronoun plays favourite sport in a team called favourite team. name would like to
pursue a career in ideal job when pronoun is older, that's why pronoun is studying hard.

Input
The input will be the dynamic data provided in seven lines.

Output
Print out the whole story including the static storyline part filled with the provided dynamic data.

Example

Input
Ainhoa
22
girl
Donostia
basketball
Mundarro
social working

Output
Ainhoa is a 22 year-old girl. She is living with her parents in an apartment in the
centre of Donostia, where she hangs out with her friends. Moreover, in her free time
she plays basketball in a team called Mundarro. Ainhoa would like to pursue a career
in social working when she is older, that's why she is studying hard.

14

Solutions

Python3

 name=input()
 age=input()
 gender=input()
 city=input()
 sport=input()
 team=input()
 job=input()

 if "girl" in gender:
 Pronoun="She"
 pronoun="she"
 possesive_pronoun="her"
 else:
 Pronoun="He"
 pronoun="he"
 possesive_pronoun="his"

 output_string = name + " is a " +age+" year-old "+gender\
 +". "+Pronoun+" is living with "+possesive_pronoun\
 +" parents in an apartment in the centre of "+city\
 +", where "+pronoun+" hangs out with "+possesive_pronoun\
 +" friends. Moreover, in "+possesive_pronoun+" free time "\
 +pronoun+" plays "+sport+" in a team called "+team\
 +". "+name+" would like to pursue a career in "+job\
 +" when "+pronoun+" is older, that's why "+pronoun\
 +" is studying hard."

 print(output_string)

15

C++

#include <iostream>

using namespace std;

int main(){

 string name, age, gender, city, sport, team, job;

 //We need to use getline because the name, city...

 // might be split in two strings

 getline(cin, name); getline(cin, age);

 getline(cin, gender); getline(cin, city);

 getline(cin, sport); getline(cin, team);

 getline(cin, job);

 string pronoun, capitalizedPronoun, possesivePronoun;

 if (gender == "boy"){

 pronoun = "he";

 capitalizedPronoun = "He";

 possesivePronoun = "his";

 }

 else{

 pronoun = "she";

 capitalizedPronoun = "She";

 possesivePronoun = "her";

 }

 cout << name << " is a " << age << " year-old "

 << gender << ". " << capitalizedPronoun

 << " is living with " << possesivePronoun

 << " parents in an appartment in the centre of "

 << city << ", where " << pronoun

 << " hangs out with " << possesivePronoun

 << " friends. Moreover, in " << possesivePronoun

 << " free time " << pronoun << " plays " << sport

 << " in a team called " << team << ". " << name

 << " would like to pursue a career in " << job

 << " when " << pronoun << " is older, that's why "

 << pronoun << " is studying hard." << endl;

}

16

6 It’s the final countdown
3 points

Introduction
Different space agencies around the world plan to send manned missions to Mars during 21 P

st
P century.

Many challenges are involved in these projects, like economic funding and astronaut health risks. Some
scientists are currently developing and testing the different technologies to provide the first step
towards Mars colonization.

And here is a critical part -- we need you to develop the software to generate the final countdown for
the spaceship launch. Would you be able to do it?

Input
The input will be a single positive integer number indicating the first value of the countdown.

Output
Print out the countdown, that is the sequence backward counting starting with the input value.

Example

Input
3

Output
3 2 1 0

17

Solutions

Python3

last_number=int(input())

for x in range(last_number, -1, -1):

 print (x, end=" ")

C++

#include <iostream>

using namespace std;

int main()

{

 int startNumber;

 cin >> startNumber;

 for (int i = startNumber; i > 0; i--)

 cout << i << " ";

 cout << 0 << endl;

}

18

7 Which graphics card should I buy?
3 points

Introduction
Your old GPU (Graphics Processing Unit) can no longer support newer video games and you want to
study several options to check which is the one that will give you those extra fps (frames per second)
needed. To evaluate the GPU performance the program will test its frequency versus the minimum
required frequency of several video games.

Input
The input will be a sequence of lines with integer numbers representing frequencies (all in MHz). The
first number will be frequency of the GPU to test. The rest of the numbers will be the minimum
frequencies required for a specific game title to perform properly. If the game frequency is 0, the
process should stop, and not consider that value.

Output
The output will be the number of video games that will run perfect for the selected GPU.

Example

Input
1809
1700
1900
1200
0

Output
2

19

Solutions

Python3

gpu_frequency=int(input())

game_needed_frequency=int(input())

count_of_games=0

while(game_needed_frequency != 0):

 if(game_needed_frequency<=gpu_frequency):

 count_of_games = count_of_games+1

 game_needed_frequency=int(input())

print(count_of_games)

C++

#include <iostream>

using namespace std;

int main()

{

 int gpuFreq, currFreq, games;

 games = 0;

 cin >> gpuFreq;

 cin >> currFreq;

 while (currFreq != 0)

 {

 if (gpuFreq >= currFreq)

 games++;

 cin >> currFreq;

 }

 cout << games << endl;

}

20

8 Run, Forrest, run!
3 points

Introduction
0TForrest is passionate about running. To have an accurate tracking of all his activity while running he
bought a U.S. sport watch. It reports the distance run every day only in miles. Forrest knows that it is
recommended that running shoes should be replaced every 622 kilometers and needs a program to
sum up all the year running activity to decide whether to replace or not his running shoes. Keep in
mind that 1 mile is approximately 1.6 kilometers.

Input
The input will be a sequence of 365 integer values in a single line representing the miles run daily during
the last year.

Output
The output of the program reports a simple string stating “Yes” or “No” to know if the running trainers
must be replaced.

Example

Input
16 4 1 15 12 20 14 2 7 10 4 14 5 15 16 21 13 3 16 11 18 17 10 20 2 18 7 12 11 5 10 8
12 1 6 1 6 12 2 10 19 8 14 13 5 6 8 12 17 1 10 4 18 6 3 7 3 1 14 11 3 14 11 13 6 13 10
14 4 11 3 10 17 18 13 11 17 7 11 3 12 4 9 2 5 15 20 20 16 19 20 18 14 8 9 15 18 21 8 3
13 15 20 17 2 12 8 15 8 4 8 10 11 20 15 1 10 5 16 11 19 11 20 6 18 6 13 21 6 8 6 11 14
14 2 14 7 11 9 6 1 7 1 4 16 20 12 15 4 5 2 20 5 17 15 13 18 18 10 17 7 14 21 19 13 17
2 1 10 11 1 5 19 6 2 12 6 14 6 16 16 15 15 11 10 21 10 11 1 21 12 3 18 20 2 9 20 20 18
5 12 13 17 9 12 1 1 18 7 15 5 21 13 20 16 2 9 10 9 1 3 8 15 16 6 14 15 1 2 9 18 18 2 4
16 14 16 2 1 21 4 3 15 16 16 3 20 6 21 5 1 20 14 4 14 14 7 2 14 9 17 14 20 21 21 19 16
20 11 18 11 5 11 21 6 16 7 18 11 9 20 2 9 12 7 5 14 14 12 15 1 3 8 13 11 20 7 5 9 4 3
15 1 1 19 11 15 12 15 21 10 11 19 19 18 15 3 6 4 20 19 6 21 17 7 2 18 4 19 8 14 16 6
13 3 15 2 12 3 8 4 17 6 7 8 11 14 16 21 20 4 15 5 14 13 3 1 21 2 13 8 4 6 8 10

Output
Yes

Solutions

Python3

import sys

sum = 0

for line in sys.stdin:

 data = line.split()

for i in data:

 sum = sum + (int(i)*1.6)

if sum >= 622:

 print("Yes")

else:

 print("No")

21

C++

#include <iostream>

using namespace std;

int main()

{

 double suma = 0;

 double num;

 while(cin >> num){

 suma += num*1.6;

 }

 (suma >= 622) ? (cout << "Yes") : (cout << "No");

 cout << endl;

}

22

9 3D Coffee
4 points

Introduction
0TYou have just bought a 3D printer and you want to run a successful 3D coffee bar business. To calculate
the price of every printed part you sell, you just apply the following formula:

price = volume printed [cmP

3
P] x p [€/cmP

3
P]

Where p is the price per cmP

3
P. If the customer doesn’t have a drink in the coffee bar the value of p is 2

€/cm P

3
P. But you promote a special offer that if customer buys one or more drinks then the value of p is

reduced to 1.8 €/cmP

3
P.

So to compute the final price for each printer part your cash register will receive two values: one
specifying the volume of the printed part and a second one detailing if a customer has had at least one
drink.

Input
The input consists of several lines of two values following this format:
<3D volume printed with two decimals> <Just Y or N to report if the customer has had a drink>
The input ends with a line with -1 integer value.

Output
Print out the invoice price for each 3D volume printed with two decimals rounding.

Example

Input
50.12 Y
50.12 N
100 Y
-1

Output
90.22
100.24
180.00

23

Solutions

Python3

Read an unknown number or lines until -1
bEOF = 0
input_clients_list=[]

while(bEOF == 0):
 line=input()
 if line=="-1":
 bEOF=1
 else:
 input_clients_list.append(line)

for client in input_clients_list:
 cm3,coffee=client.split()

 if coffee=="Y":
 p=1.8
 else:
 p=2.0
 cost=p*float(cm3)
 rounded_cost=round(cost,2)
 # we want 2 output digits
 print ("%.2f" % rounded_cost)

24

C++

#include <iostream>

#include <iomanip>

#include <sstream>

#include <stdint.h>

using namespace std;

int main()
{

 string line;

 while(getline(cin, line)){
 if (line == "-1") break;
 else{
 string hadDrink;

 double volume, totalAmount, cost;
 istringstream(line) >> volume >> hadDrink;

 if(hadDrink == "Y")
 cost = 1.8;
 else
 cost = 2;
 totalAmount = volume * cost;

 cout << setprecision(2) << fixed << totalAmount

 << endl;
 }

 }

}

25

10 Triathlon timing
4 points

Introduction
A triathlon is a multidisciplinary race that combines three different sports: swimming, cycling, and
running. Although the three disciplines are practiced one after the other, the classificatory system
tracks the time of each of them individually. At the end of the race, the three registered times are added
up to determine the final time.

Given the three registered times for swimming, cycling and running, compute the final race time in the
appropriate format (XXhYYmZZs). The triathlon will not last longer than 72 hours.

Input
The three registered times for swimming, cycling and running of triathlon are provided following the
time format XXhYYmZZs.

Output
The final race time of triathlon in format XXhYYmZZs.

Example

Input
00h28m43s
01h02m31s
00h37m17s

Output
02h08m31s

26

Solutions

Python3

import re

times=[]

for num_times in range(3):

No error detection in the input format!

 a = [int(i) for i in re.findall('[0-9]+',input())]

 times.append(a)

Lets add the times

total=[0,0,0]

loop hh mm ss

for x in range(3):

 for y in range(len(times)):

 total[x]=total[x]+times[y][x]

And reduce the minutes and seconds to 60

total[1]=total[1]+int(total[2]/60)

total[2]=total[2]%60

total[0]=total[0]+int(total[1]/60)

total[1]=total[1]%60

print("%02dh%02dm%02ds" % (total[0], total[1], total[2]))

27

C++

#include <iostream>

#include <iomanip>

#include <sstream>

#include <stdint.h>

using namespace std;

int main()
{

 string swimLine, cycleLine, runLine;

 cin >> swimLine>> cycleLine >> runLine;

 int secSwim, minSwim, hourSwim;
 secSwim = (int)(swimLine[6] - '0') * 10 + (int)(swimLine[7] - '0');
 minSwim = (int)(swimLine[3] - '0') * 10 + (int)(swimLine[4] - '0');
 hourSwim = (int)(swimLine[0] - '0') * 10 +
 (int)(swimLine[1] - '0');

 int secCycle, minCycle, hourCycle;
 secCycle = (int)(cycleLine[6] - '0') * 10 +
 (int)(cycleLine[7] - '0');
 minCycle = (int)(cycleLine[3] - '0') * 10 +
 (int)(cycleLine[4] - '0');
 hourCycle = (int)(cycleLine[0] - '0') * 10 +
 (int)(cycleLine[1] - '0');

 int secRun, minRun, hourRun;

 secRun = (int)(runLine[6] - '0') * 10 + (int)(runLine[7] - '0');
 minRun = (int)(runLine[3] - '0') * 10 + (int)(runLine[4] - '0');
 hourRun = (int)(runLine[0] - '0') * 10 + (int)(runLine[1] - '0');

 int seconds = secSwim + secCycle + secRun;
 int minutes = minSwim + minCycle + minRun;
 int hours = hourSwim + hourCycle + hourRun;

 minutes += seconds / 60;
 seconds = seconds % 60;
 hours += minutes / 60;
 minutes = minutes % 60;

 if (hours < 10)
 cout << "0" << hours << "h";
 else
 cout << hours << "h";
 if (minutes < 10)
 cout << "0" << minutes << "m";
 else
 cout << minutes << "m";
 if (seconds < 10)
 cout << "0" << seconds << "s";
 else
 cout << seconds << "s";
 cout << endl;

}

28

11 Character counting
4 points

Introduction
Your Computer Science teacher needs a program to analyze text. He is interested in counting how many
uppercase and lowercase letters the text contains. The rest of the characters in the text (numbers,
punctuation, math symbols, etc.) must be also counted except spacing characters that must be ignored.
Would you be so kind to write this program?

Input
The input will be a line with the text to be analyzed.

Output
Print out the number of uppercase, lowercase and other characters found in the text.

Example

Input
Hi there! How are you today? The answer is 4*8 + 34 - 2 = (2^6)

Output
Uppercase 3
Lowercase 29
Other 16

29

Solutions

Python3

input_str=input()

up_count=0

low_count=0

other_count=0

for x in input_str:

 if x.isupper():

 up_count+=1

 elif x.islower():

 low_count+=1

 elif x != ' ':

 other_count+=1

print("Uppercase",up_count)

print("Lowercase",low_count)

print("Other",other_count)

C++

 #include <iostream>

 #include <ctype.h>

 using namespace std;

 int main()
 {

 int upperCase = 0;
 int lowerCase = 0;
 int other = 0;
 char c;
 while(cin >> c)
 {

 if (isupper(c))
 upperCase++;

 else if (islower(c))
 lowerCase++;

 else if (c != ' ')
 other++;

 }

 cout << "Uppercase " << upperCase << endl;
 cout << "Lowercase " << lowerCase << endl;
 cout << "Other " << other << endl;
 }

30

12 Tracking student’s progress
5 points

Introduction
Every quarter your teacher collects the student’s notes of the every class where he teachs. He reviews
the results and compare the different classes he is teaching. This way he can improve his lessons. To
avoid doing this task manually with a pocket calculator you can help him by creating a program. This
program should find out the number of students that is below the average grade. Beware that the
student’s notes can be written with decimal number, as in real life.

Input
The input consists of several lines containing the student’s notes of the whole class expressed in
decimal format.

Output
Print out the number of students below the average.

Example

Input
8
0
4.3
6.5
4.7

Output
2

31

Solutions

Python3

bEOF = 0
grades_list=[]

grades_avg=0
while(bEOF == 0):
 line=""
 # The try/except will allow us reading a input file
 # without an empty final line
 try:
 line=input()
 except:
 bEOF=1
 if line=="":
 bEOF=1
 else:
 grades_list.append(float(line))
 grades_avg+=float(line)

grades_avg=grades_avg/len(grades_list)

Checks how many students have a grade below the average
count_below=0
for x in grades_list:
 if x < grades_avg:
 count_below+=1

print(count_below)

32

C++

#include <iostream>

#include <vector>

using namespace std;

int main()

{

 double avg = 0;

 vector<double> v;

 double grade;

 while(cin >> grade)

 {

 v.push_back(grade);

 avg +=grade;

 }

 avg = avg / v.size();

 int count = 0;

 for (int i = 0; i < v.size(); ++i)

 if(v[i] < avg) ++count;

 cout << count << endl;

}

33

13 Quadratic equation solver
5 points

Introduction
Jeremy is nervous. He has his first Quadratic Equation exam, and he is about to begin. But Jeremy is the
best young programmer of its classroom, and he wonders if he could programmatically solve any
Quadratic Equation in the world with a simple code.

Jeremy knows very well that a generic Quadratic Equation has the form

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

Where a, b, and c are the coefficients of the equation. Could you help Jeremy and write a program that
receives as input the coefficients of the equations and tells you the solution?

Remember that the roots of a Quadratic Equation can be computed as

𝑥+,− =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

Input
The input of the program is the value of the coefficients of the equation, separated by spacing
characters.

Output
The output of the program is the solution (the roots of the quadratic equation).

Remember that a quadratic equation can have complex roots when bP

2
P-4ac is lesser than 0. Your program

must answer “It has complex Roots!” if that is the case (Example 1).

When the roots are not complex, the solution must be shown featuring first x+ and second x- with two
decimals rounding (Example 2).

Example 1

Input
1 1 5

Output
It has complex Roots!

Example 2

Input
1 2.5 -4.5

Output
x_+ = 1.21; x_- = -3.71

34

Solutions

Python3

import math

[a,b,c] = [float(x) for x in input().split()]

Calculate the square root argument

d = b*b-4*a*c

Complex roots?

if d < 0:

 print("It has complex Roots!")

else:

Else, print the output

 e = math.sqrt(d)

 x1=(-b+e)/(2*a)

 x2=(-b-e)/(2*a)

 print("x_+ = %.2f; x_- = %.2f" % (x1,x2))

C++

#include <iostream>

#include <math.h>

using namespace std;

int main()
{

 double a, b, c;
 cin >> a >> b >> c;

 double x1, x2;
 double check = b*b - 4*a*c;

 if (check < 0)
 cout << "It has complex Roots!" << endl;

 else
 {

 x1 = (-b + sqrt(check))/(2*a);
 x2 = (-b - sqrt(check))/(2*a);
 cout << "x_+ = " << setprecision(2)
 << fixed << x1 << "; ";
 cout << "x_- = " << setprecision(2)
 << fixed << x2 << endl;

 }

}

35

14 Power of 2
6 points

Introduction
In Computer Science we deal daily with binary numbers. As you may know a binary number is
represented in a row of bits that could have a value of 0 or 1. It is assigned to each bit a position number,
ranging from zero to N-1, where N is the number of bits in the binary representation used. Usually, this
is simply the exponent for the corresponding bit weight in base-2 (such as in 2 P

31
P..2 P

0
P).

Consider the decimal number 42, as an example, its representation in binary is 101010. Meaning that
the position of 2 P

5
P is 1, 2 P

4
P is 0,2 P

3
P is 1, 2 P

2
P is 0, 2 P

1
P is 1 and 2 P

0
P is 0. So, the exponent of the highest power of

2 is 5 (2P

5
P).

Given a decimal number find out the exponent of the highest power of 2.

Input
The input will be a single positive integer number higher than 0.

Output
Print out the position of first one from left in binary.

Example 1

Input
5

Output
2

Example 2

Input
10

Output
3

36

Solutions

Python3

num = int(input())

Converts to a binary string

num_bin=bin(num)

And check the max power. I.e 42=0b101010 -> Max power==5

print(len(num_bin)-2-1)

C++

#include <iostream>

#include <math.h>

using namespace std;

int main()

{

 int num;

 double res;

 cin >> num;

 res = log2((double)num);

 cout << (int) res << endl;

}

37

15 Not-allowed-entry-charset
6 points

Introduction
An online Web form includes a section for entering freeform text. However, there are some characters
or numbers that cannot be inserted into our back-end database. To solve this problem, we need you to
create a program that, given a string and a not-allowed character set, will remove all occurrences of
the not-allowed literal characters from the entry of the user string.

Input
The input will consist of two lines:
<the given string>
<the not-allowed-entry-char-set>

Output
Print out the original given string after removing the not-allowed-entry-charset.

Example 1

Input
12345678
3456

Output
1278

Example 2

Input
87654321
346

Output
87521

38

Solutions

Python3

Read the input

string = input()

not_allowed = input()

output_string=""

Creates the output by adding the allowed characters

for x in string:

 if not(x in not_allowed):

 output_string+=x

print(output_string)

C++

#include <iostream>

#include <string>

#include <stdint.h>

using namespace std;

int main()

{

 string original;

 string nA;

 string result;

 getline(cin, original);

 cin >> nA;

 for (int i = 0; i < original.length(); i++)

 {

 size_t found = nA.find(original[i]);

 // If not found then append this char to the result

 if (found==string::npos)

 {

 result+= original[i];

 }

 }

 cout << result << endl;

}

39

16 Emirp numbers
7 points

Introduction
A prime is a number that is only divisible by one and itself, which is essentially saying that it has no
divisor. Nowadays primes are essential for secure communications. Most modern computer
cryptography works by using the prime factors of large numbers.

When you reverse the digits of most primes you get a composite number (for example, 43 becomes 34).
That is not the case for palindromic primes that read the same forward and backward (for example,
727), so reversing a palindromic prime gives you the same prime.

Then there is an special category, the emirp numbers. An emirp (the word "prime" written backwards)
is a prime whose reversal is also prime, but which is not a palindromic prime (for example, 13 becomes
31). The first emirp numbers are 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, ...

Let’s write a program to find out whether an integer number is emirp.

Input
The input will be an integer number.

Output
Print out whether the given numer is emirp or not.

Example 1

Input
13

Output
13 is an emirp number

Example 2

Input
11

Output
11 is not an emirp number

40

Solutions

Python3

def isPrime(x):

 prime = True

 i = 2

 while i < x:

 if (x % i == 0):

 prime = False

 break

 i += 1

 return prime

def revertNumber(x):

 reverse = 0

 while x > 0:

 reminder = x % 10

 reverse = (reverse * 10) + reminder

 x = x // 10

 return reverse

def isPalindrome(x):

 return (str(x) == str(x)[::-1])

number = int(input())

result = isPrime(number) and isPrime(revertNumber(number))

result = result and not isPalindrome(number)

if result:

 print(str(number) + " is an emirp number")

else:

 print(str(number) + " is not an emirp number")

41

C++

#include <iostream>

using namespace std;

bool isPrime(int n)

{

 if (n <= 1) return false;

 for (int i = 2; i < n; i++)

 if (n % i == 0) return false;

 return true;

}

bool isEmirp(int n)

{

 if (! isPrime(n)) return false;

 int rev = 0, ori = n;

 while (n != 0)

 {

 int d = n % 10;

 rev = rev * 10 + d;

 n /= 10;

 }

 //check that the reverse is prime and not a plaindrome

 return isPrime(rev) && !(ori == rev);

}

int main()

{

 int n;

 cin >> n;

 cout << n << " is ";

 if (!isEmirp(n)) cout << "not ";

 cout << "an emirp number" << endl;

}

42

17 Magic sum
10 points

Introduction
One day, while you are sitting in front of your computer, something incredible happens. The computer
starts making some noise and in a blast of light everything goes blank. When you opened your eyes,
you found yourself in a weird and magical world. The computer must have sent you to another planet
in a different parallel universe.

Walking around, in a hurry to find a way to come back home, you found out a message in a poster saying:
"Solve the sum of all digits of a given number to go home!". You stopped and told yourself - wait, to
come back home, the only thing is to solve a simple sum? is all that takes! –

Unfortunately, in this world, the basic mathematical operations are quite different than the ones in
your home world. Thus, you need to understand them in order to give the correct answer and come back
home.

The magic sum operation requires you to review a sequence of digits and find the sum of all digits with
the following properties:

- In order to consider a digit, it has to match the next digit in the sequence. The sequence is
circular, so the digit after the last digit is the first digit in the sequence.

- If a digit is even, you must multiply it by its position in the list before sum it. In this case, the
first digit is considered to have the position 1.

- If a digit is odd, just sum it.

For instance:

- 1122 : outputs 7 = 1+6 → because the first digit (1) matches the second digit and its odd, we sum
its value. The third digit (2) matches the fourth one and because its even, we multiply it by its
position (that is 3).

- 123 : outputs 0 → because none of the elements matches the next in the sequence.
- 565 : outputs 5 → because the the third digit (5) matches the first one and its odd.

Will you be able to solve the sum and come back home?

Input
The input consists of several lines with given numbers
Each number consists in a sequence of digits. All digits are between 1 and 9.

Output
The output must consist in several lines with the integers representing the magic sum of the input
numbers.

43

Example

Input
1122
123
565
1

Output
7
0
5
1

44

Solutions

Python3

Read the input
bEOF = 0
numbers_list=[]

while(bEOF == 0):
 line=""
 # The try/except will allow us reading a input file
 # without an empty final line
 try:
 line=input()
 except:
 bEOF=1
 if line=="":
 bEOF=1
 else:
 numbers_list.append(line)

for number in numbers_list:
 # to make the circular check easier adds the first
 # digit to the end of the string
 number+=number[0]

 sum=0
 for index in range(len(number)-1):
 # Check if the digit is equal to the next one
 digit=int(number[index])
 next_digit=int(number[index+1])
 if digit==next_digit:
 # and if are equal, checks if it's even or odd
 if digit%2==0:
 sum+=(index+1)*digit
 else:
 sum+=digit
 print(sum)

45

C++

#include <iostream>

#include <vector>

#include <string>

using namespace std;

// return the magic sum for a given number and

//its next in the sequence

int sum(int x1, int x2, int pos) {
 int s = 0;
 if (x1 == x2) {
 // is number even
 if ((x1 & 1) == 0) s = x1 * pos;
 else s = x1;
 }

 return s;
}

// calculates the magic sum of a given sequence of

numbers

int magicSum(vector<int> seq) {
 // perform calculations
 int s = 0;
 int i;
 for (i = 0; i < seq.size() - 1; i++) {
 s += sum(seq[i], seq[i + 1], i + 1);
 }

 s += sum(seq.back(), seq[0], i + 1);
 return s;
}

//continues on next page...

46

 //...

// convert a string into an array of integers

vector<int> toVectorInt(string seq) {

 vector<int> seq_i;

 seq_i.reserve(seq.size());

 for (string::iterator it = seq.begin();

 it != seq.end(); ++it) {

 seq_i.push_back((int) (*it - '0'));

 }

 return seq_i;

}

int main() {

 string seq;

 vector<int> seq_i;

 int s;

 // read a sequence --> a line

 while (cin >> seq) {

 //transform the string into a integer vec-

tor

 seq_i = toVectorInt(seq);

 //compute the sum

 s = magicSum(seq_i);

 //write the output

 cout << s << endl;

 }

}

47

18 Space battleship
10 points

Introduction
A long time ago in a galaxy far, far away.... the Rebel and Imperial fleets are fighting against each other
in the final battle near Coruscant. Princess Leia has ordered you to provide the total amount of hits
against the Imperial forces. To ease your job you are given an square matrix representing the battle
scenario with the X/Y coordinates where the imperial ships are present. You are also provided with the
X/Y coordinates of the shots fired by the rebels.

4 1 0 0 0 0

3 0 0 0 1 0

2 0 0 1 0 0

1 0 1 0 0 1

0 1 0 0 0 0

 0 1 2 3 4

Sometimes the rebels fire more than once to the same objective. Beware of not double counting these
shots. Can you develop a program to provide this data as soon as possible? Remember you are her last
hope.

Input
The first value of the input will be an integer number representing the size of the square matrix. It
will be followed by the matrix where 1 means an imperial spaceship is present and 0 is just empty
space.
Then the number of shots is reported followed by the coordinates of every shot.

Output
Print out the number of successful hits on the Imperial fleet.

Example

Input

5
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 1
1 0 0 0 0
5
1 1
4 4
1 1
4 1
0 4

Output
3

X

Y

48

Solutions

Python3

Read the input
Fist, fill the battleships matrix
Beaware of the revesed notation in the matrix
and the input file ;-)
n = int(input())
empty matrix
matrix = [[None for i in range(n)] for x in range(n)]

for line in range(n):
 line_int=[int(x) for x in input().split()]
 # and stores it, also in inverted order
 matrix[n-line-1]=line_int

Read the shots' coordinates and check if it's a hit
num_shots=int(input())
num_hits=0

for trials in range(num_shots):
 [x,y]=[int(i) for i in input().split()]
 if matrix[y][x]==1:
 num_hits+=1
 matrix[y][x]=0

print(num_hits)

49

C++

#include <iostream>

#include <string>

#include <vector>

using namespace std;

int main()

{

 // Read the matrix size

 int n;

 cin >> n;

 // Read the matrix data

 vector < vector <int> > matrix(n, vector<int>(n));

 for (int i=0; i<n; i++){

 for (int j=0; j<n; j++){

 cin >> matrix[j][n-1-i];

 }

 }

 // Read the number of shots

 int shots = 0, counter = 0;

 cin >> shots;

 // Process the shots

 for (int i=0; i<shots; i++)

 {

 int x, y;

 cin >> x >> y;

 if (matrix[x][y] == 1){

 matrix[x][y] = 0;

 counter++;

 }

 }

 cout << counter << endl;

}

50

19 Cross-stitch
12 points

Introduction
As a hobby you decided to do a cross-stitch picture. You have an schema with different colors and you
want to know how many skeins of yarn you need for every color. Every stitch consumes 10mm of yarn
and every skein has 1m of yarn.

Every character represents an unique color except white spaces and new lines.

Input
The input will be a line with an integer that represents the total number of colors, followed by a series
of lines representing the picture where each different character represents a color.

Output
A report detailing the number of skeins needed by color. The output order is not relevant.

Example

Input
3

--------AA--------
------AAAAAA------
----AAAAAAAAAA----
--------AA--------
------AAAAAA------
----AAAAAAAAAA----
--------AA--------
------AAAAAA------
----AAAAAAAAAA----
--------OO--------
--------OO--------
--------OO--------

Output
- 2 skeins of yarn -
- 1 skeins of yarn A
- 1 skeins of yarn O

51

Solutions

Python3

from math import ceil
stitches_per_skein=100

Read the input
num_colors=int(input()) # really...this is not needed

Fills the matix
bEOF = 0
picture=[]

while(bEOF == 0):
 line=""
 # The try/except will allow us reading a input file
 # without an empty final line
 try:
 line=input()
 except:
 bEOF=1
 if line=="":
 bEOF=1
 else:
 picture.append(line)

Create a dynamic dictionary with the
color symbols as keys and the count as value
dictionary = {}

Now, loop for all the lines
for line in picture:
 # and look at all the stitches
 for stitch in line:
 if not(stitch in dictionary):
 dictionary[stitch] = 1
 else:
 dictionary[stitch] += 1

Print the results
for key, value in dictionary.items():
 skeins = str(ceil(value/stitches_per_skein))
 yarn = str(key)
 print("- "+ skeins +" skeins of yarn " + yarn)

52

C++

#include <iostream>

#include <map>

using namespace std;

int main()

{

 map<char,int> m;

 const int mmPerStitch = 10, mmPerSkein = 1000;

 string line;

 int num_colors;

 cin >> num_colors;

 while (getline(cin, line)){

 // Read all the stitches of current line

 for (int i = 0; i < line.length(); ++i){

 char stitch = line[i];

 // Is the color of this stitch already seen?

 map<char,int>::iterator it = m.find(stitch);

 // Increase the counter for current color

 if (it != m.end()) m[stitch] = m[stitch]+1;

 // New color, so let's initialize the counter

 else m[stitch] = 1;

 }

 }

 for (map<char, int>::iterator it = m.begin();

 it != m.end(); ++it){

 int skein = (it->second*mmPerStitch)/mmPerSkein;

 int module = (it->second*mmPerStitch)%mmPerSkein;

 cout << "- " << (module == 0? skein : skein+1);

 cout << " skeins of yarn " << it->first << endl;

 }

}

53

20 Car race
12 points

Introduction
A famous website portal has asked you to help them publish the race results of car races.

You have managed to subscribe to a news feed service that reports the order of the racers in the grid at
the beginning of the race and any overtakes that occur during the race. This will suffice to let you keep
track of each racer's position until the end of the race. Can you automate this task writing a piece of
software?

Input
The input format is as follows:

- The first line consists of the list of racers following the order in the grid. The name of the racers
consists of a first name without any white spaces. In the example; Ann is first followed by Beth,
which is followed by Carol, etc.

- The following lines contain the overtakes that occur over the course of the race. All the overtake
announcements will consist one car taking the position of the car that was immediately ahead
of it. Do not consider the case of the racers that are lapped twice by the leading racers.

Output
The output consists of the list of racers, one per line, in the order in which they have finished the race.

1

2

3

4

5

Ann

Beth

Carol

Dave

Ethan

54

Example

Input
Ann Beth Carol Dave Ethan
Ethan overtakes Dave
Carol overtakes Beth
Carol overtakes Ann
Beth overtakes Ann
Dave overtakes Ethan

Output
Carol
Beth
Ann
Dave
Ethan

55

Solutions

Python3

Read the input and creates a vector where the index
is the position and the value is the name
order=input().split()
Now, loops though the list of overtakes
Fills the matix
bEOF = 0
while(bEOF == 0):
 line=""
 # The try/except will allow us reading a input file
 # without an empty final line
 try:
 line=input()
 except:
 bEOF=1
 if line=="":
 bEOF=1
 else:
 # Here we have a valid line
 [racer_2, dummy, racer_1]=line.split()

 # Looks for the index of the 1st racer
 # the second racer is its follower
 racer_1_pos=order.index(racer_1)

 # And switch the positions
 tmp_str=order[racer_1_pos]

 order[racer_1_pos]=order[racer_1_pos+1]
 order[racer_1_pos+1]=tmp_str

And just print the final order
for racer in order:
 print(racer)

56

C++

#include <iostream>

#include <string>

#include <sstream>

#include <map>

#include <vector>

using namespace std;

int main(void)

{

 string line, token;

 map<string, int> ranking;

 getline(cin, line);

 istringstream ss(line);

 int i=0;

 while (getline(ss, token, ' '))

 ranking[token]=i++;

 int N = i;

 string carA, overtakes, carB;

 while (getline(cin, line))

 {

 ss.str(line);

 ss.clear();

 ss >> carA >> overtakes >> carB;

 ranking[carA]--; // carA is now one position ahead.

 ranking[carB]++; // carB is now one position after.

 }

 vector<string> v(N);

 for (map<string, int>::iterator it = ranking.begin();

 it!=ranking.end(); it++){

 v[it->second] = it->first;

 }

 for (i=0;i<N;i++)

 cout << v[i] << endl;

 return 0;

}

57

21 Game of life
15 points

Introduction
The Game of Life, also known simply as Life, is a cellular automaton devised by the British
mathematician John Horton Conway in 1970.

The game is a zero-player game, meaning that its evolution is determined by its initial state, requiring
no further input. One interacts with the Game of Life by creating an initial configuration and observing
how it evolves.

We want to simulate such experiment, by creating a simulator of this Game of Life.

The rules of the game are simple.

We have a board of N x N size, that will be filled with life or dead cells (# or .). After each turn, every
state of the cell will be determined by the previous state according to the following rules:

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.

2. Any live cell with two or three live neighbors’ lives on to the next generation.

3. Any live cell with more than three live neighbors dies, as if by over-population.

4. Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

The neighbors of a cell A are determined by all the surroundings cells of the cell A (vertically,
horizontally and diagonally). Some patterns will survive forever, other may oscillate among different
status and other may even move or create other patterns.

This will be a stable pattern, . As you can see all the dead cells will remain dead as they only
have 1 or 2 neighbors, and the already alive cells will always live because they have 3 neighbors.

An oscillator is a pattern that returns to its original state, in the same orientation and position, after a

finite number of turns. The toad is a repeating pattern that oscillates between and

. Those cells that appear, do so because they have exactly 3 neighbors, and those cells that
die do so because they have 4 or more neighbors or they have 1 or less neighbors.

Following these rules, we can create complex and bigger patterns.

Your goal will be create an application that can load a board of size N x N from the input, and will
produce as output the final state of the board after m turns.

You can see some examples of input and output in the following sections.

58

 HINT: Don’t forget that the total size of the board can be up to 100 x 100, so be careful
with sizes, and don’t forget to be careful when updating your board (wink, wink). By the
way, doing it by hand could take LOTS of time (specially if we will test it with high numbers
of iterations…).

Input
< m that represents the number of turns >
< N that represents the board size >
< board data matrix displayed as N rows x N columns >

Output
Print out the resulting board data.

Example 1

Input
2
5
.
. . # # .
. . # # .
.
.

Output
.
. . # # .
. . # # .
.
.

Example 2

Input
2
5
. # # .
. . # .
. . # # .
.
.

Output
. . # # .
. # . . #
. . . # .
.
.

59

Solutions

Python3

Read the input

M=int(input())

N=int(input())

grid=[]

for _ in range(N):

 line=input().split()

 grid.append(line)

Empty grid

future=[[None for _ in range(N)] for _ in range(N)]

Turns loop

for turn in range(1, M+1):

 for i in range(N):

 for j in range(N):

 alive = 0

 # Calculate the limits of the adjacent cells

 # taking in consideration the grid edges

 x_min=max(0, i-1); x_max=min(i+1, N-1)

 y_min=max(0, j-1); y_max=min(j+1, N-1)

 for x in range(x_min, x_max+1):

 for y in range(y_min, y_max+1):

 if(grid[x][y]=='#' and (x!=i or y!=j)):

 alive+=1

 # Cell is lonely and dies

 if(grid[i][j] == '#' and (alive < 2)):

 future[i][j] = '.'

 # Cell dies due to over population

 elif (grid[i][j] == '#' and (alive > 3)):

 future[i][j] = '.'

 #A new cell is born

 elif (grid[i][j] == '.' and (alive == 3)):

 future[i][j] = '#'

 #Remains the same

 else: future[i][j] = grid[i][j];

 # And copy the new grid to the current one

 for i in range(N):

 for j in range(N):

 grid[i][j]=future[i][j]

Print the result

for i in range(N):

 for j in range(N):

 print(grid[i][j],end=' ')

 print()

60

C++

#include <iostream>

#include <vector>

using namespace std;
//global variables to simplify parameter passing

int M, N;
bool valid_position(int i, int j);
void read(vector< vector<bool> >& grid);
void print(const vector< vector<bool> >& grid);
void turn(vector<vector<bool> >& grid);
//Program the main structure

int main(){
 cin >> M >> N;

 vector< vector< bool> > grid(N, vector<bool>(N));
 read(grid);

 // Compute each turn
 for (int k = 0; k < M; ++k){
 turn(grid);

 }

 print(grid);

}

//The detailed implementation is in the functions

bool valid_position(int i, int j){
 return(i >= 0 and i < N and j >= 0 and j < N);
}

void read(vector< vector<bool> >& grid){
 for (int i = 0; i < N; ++i){
 for (int j = 0; j < N; ++j){
 char c;
 cin >> c;

 grid[i][j] = (c == '#');
 }

 }

}

void print(const vector< vector<bool> >&grid){
 for (int i = 0; i < N; ++i){
 for (int j = 0; j < N; ++j){
 char c = (grid[i][j]? '#' : '.');
 cout << c;

 if (j!=N-1)
 cout << " ";
 }

 cout << endl;

 }

}

//continues on the next page...

61

//...

void turn(vector<vector<bool> >&grid){
 // Loop through every cell
 vector<vector<bool> > future(N, vector<bool>(N));
 for (int l = 0; l < N; l++){
 for (int m = 0; m < N; m++){
 // finding number of alive neighbours
 int alive = 0;
 for (int i = -1; i <= 1; i++)
 for (int j = -1; j <= 1; j++)
 //don't look at invalid positions
 //to avoid segmentation faults
 if(valid_position(l+i, m+j)){
 alive += grid[l + i][m + j];

 }

 // The cell needs to be subtracted from
 // its neighbours as it was counted before
 alive -= grid[l][m];

 // Implementing the Rules of Life
 // Cell is lonely and dies
 if ((grid[l][m] == 1) && (alive < 2))
 future[l][m] = 0;
 // Cell dies due to over population
 else if ((grid[l][m] == 1) && (alive > 3))
 future[l][m] = 0;
 // A new cell is born
 else if ((grid[l][m] == 0) && (alive == 3))
 future[l][m] = 1;
 // Remains the same
 else future[l][m] = grid[l][m];
 }

 }

 grid = future;

 return;
}

62

22 Nested triangles
15 points

Introduction
Given an input nesting level number, within the range from 0 to 9, draw a set of triangles which sit
inside each other. Please note in the examples that a nesting level of 0 means a 0 triangle.

Input
The input will be a single integer number indicating the level of nesting between 0 and 9.

Output
Print out the nested triangles.

Example 1

Input
1

Output
 1
111

Example 2

Input
3

Output
 3
 323
 32123
 3211123
 322222223
33333333333

Example 3

Input
0

Output
0

63

Solutions

Python3

def nestedTriangle(level):

 listOfRows = []

 if level == 0:

 listOfRows =["0"]

 elif level == 1:

 listOfRows = ["1", "111"]

 else:

 listTmp = nestedTriangle(level-1)

 listOfRows = [level]

 for i in listTmp:

 listOfRows.append(str(level) + str(i) + str(level))

 listOfRows.append(str(level)* (len(listOfRows[-1])+2))

 return listOfRows

number = input()

l = nestedTriangle(int(number))

if len(l) != 0:

 size = len(l[-1])

 steps = int(size/2)

 for i in l:

 res = ((str(" ") * steps) + str(i))

 steps= steps - 1

 print(res)

64

C++

#include<iostream>

using namespace std;

int main(){

 int n;

 cin >> n;

 int rows = n*2, stop = 0;

 for (int i = 1; i < rows+1; ++i){

 int start = n;

 //spaces

 for (int j = 1; j < rows-i+1; ++j){

 cout << " ";

 }

 //top

 if(i <= rows/2){

 for(int j = rows-i; j < rows; ++j){

 cout << start;

 --start;

 }

 ++start;

 for(int j = rows-i+1; j < rows; ++j){

 ++start;

 cout << start;

 }

 }

 //bottom

 else{

 ++stop;

 for(int j = start; j > stop; --j){

 cout << start;

 --start;

 }

 for(int j = 0; j < stop*4-1; ++j){

 cout << stop;

 }

 for(int j = stop; j < n; ++j){

 ++start;

 cout << start;

 }

 }

 cout << endl;

 }

}

65

23 Matrix Code
15 points

Introduction
You work as a technical consultant for the new upcoming sci-fi film “Matrix Code”.

In the movie, a white hat hacker named “Robt” is studying an unknown new malware (malicious
software) that is obfuscating all the internet communications. During the investigation Robt gets
absorbed into the machine computing world by the malware and he will have to fight it from the inside.

This movie will use a lot of special effects related to how the computers interact with the real world
and the director and art team want to include subliminal messages in the representation of the
obfuscated transmissions.

You are asked to develop a prototype to allow the movie team to obfuscate text communications. Since
the movie will be set in the 1990’s, the output will have to be represented in 4:3 screen format, to
simulate the old CRT monitors.

At the moment, only one obfuscating algorithm is requested. This one, should change all the letters
from the text by the next one in the alphabet. If the obfuscated text message does not fill the whole
screen, the character “ should be shown, except in those pixels that are located in the screen’s diagonal,
where # should be shown instead.

Important notes

• Format 4:3 means, only character displays of 4x3, 8x6, 12x9, 16x12, etc, are allowed
• Only letters should change, any other symbol should remain the same.
• The diagonal is formed by the positions (x, y) where x=y
• Each element should be separated by a space.

Input
A text of any length in a single line (only ASCII characters)

Output
The output will be the minimum matrix of format 4:3 showing the obfuscated text with the requested
restrictions

66

Example 1

Input
Hi Robt, the matrix has you and you will not escape!

Output

I j S p c u , u i f
 n b u s j y i b t
z p v b o e z p v
x j m m o p u f t d
b q f ! # " " " " " " "
" " " " " # " " " " " "
" " " " " " # " " " " "
" " " " " " " # " " " "
" " " " " " " " # " " "

Example 2

Input
Hi Robt, to be able to exit from the matrix you must analyze the data prompted in the
screen. Then you will fully understand the code. Zzz.

Output

I j S p c u , u p c f b
c m f u p f y j u g s p n
 u i f n b u s j y z p v
n v t u b o b m z A f u i f
 e b u b q s p n q u f e j
o u i f t d s f f o . U i
f o z p v x j m m g v m m
z v o e f s t u b o e u i f
 d p e f . a A A . " " " " "
" " " " " " " " " # " " " " " "
" " " " " " " " " " # " " " " "
" " " " " " " " " " " # " " " "

67

Solutions

Python3

Takes any message and prints it in a 4:3 matrix.

def paint(message):

 # Decide the matrix size:

 length = len(message) # Minimum required length

 wRes = 4

 hRes = 3

 width = 4

 height = 3

 while((width * height) < length):

 width += wRes

 height += hRes

 # Here is where the message will be printed

 matrix = ''

 position = 0

 for i in range(height):

 for j in range(width):

 # Write the corresponding character in the matrix:

 # Give priority to write the message:

 if(position < length):

 matrix += message[position]

 # When the message has been printed, fill with # or "

 elif(i == j):

 matrix += '#'

 else:

 matrix += '"'

 # Add spaces or line-end if necessary:

 # End of the line but not end of the matrix

 if((j+1 == width) & (position < (width*height-1))):

 matrix += '\n'

 # No end of the line

 else:

 matrix += ' '

 # Increment position counter

 position += 1

 print(matrix)

continues on next page...

68

 #...

Takes the input message and shifts letters
by their next ones in the alphabet
def translate (inputMessage):

 # After 'z', it comes 'a' again
 alphabetLowerCase = 'abcdefghijklmnopqrstuvwxyza'
 alphabetUpperCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZA'
 alphabet = alphabetLowerCase + alphabetUpperCase

 outputMessage = ''
 # Iterate over the input message
 for character in inputMessage:
 if character in alphabet:
 # Find the letter and take the next one in the list.
 newCharacter = alphabet[alphabet.index(character)+1]
 else:
 # Copy the character. No conversion here
 newCharacter = character

 # Append it into the output message
 outputMessage += newCharacter

 return outputMessage

inputMessage = input()
paint(translate(inputMessage))

69

C++

#include<iostream>

#include <string>

using namespace std;

// Takes any message and prints it in a 4:3 matrix.

void paint(string message){

 // Decide the matrix size:

 int length = message.size(); // Minimum required length

 int wRes = 4, hRes = 3, width = 4, height = 3;

 while((width * height) < length){

 width += wRes;

 height += hRes;

 }

 // Here is where the message will be printed

 string matrix = "";

 int position = 0;

 for (int i = 0; i < height; ++i){

 for (int j = 0; j < width; ++j){

 // Write the corresponding character in the matrix:

 // Give priority to the message:

 if(position < length){

 matrix += message[position];

 }

 // When the message has been printed fill with # or "

 else if(i == j) matrix += '#';

 else matrix += '"';

 // Add spaces or line-end if necessary:

 // End of the line but not end of the matrix

 if((j+1 == width) and (position < (width*height-1))){

 matrix += '\n';

 }

 // No end of the line

 else matrix += ' ';

 // Increment position counter

 position += 1;

 }

 }

 cout << matrix << endl;

}

// continues on next page...

70

 //...

// Takes the input message and shifts letters

// by their next ones in the alphabet

string translate (string inputMessage){
 // After 'z', it comes 'a' again
 string alphabetLowerCase = "abcdefghijklmnopqrstuvwxyza";
 string alphabetUpperCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZA";
 string alphabet = alphabetLowerCase + alphabetUpperCase;

 string outputMessage = "";
 // Iterate over the input message
 for (int i = 0; i < inputMessage.size(); ++i){
 char newChar;
 //search the alphabet for the char at position i
 size_t found = alphabet.find(inputMessage[i]);
 if (found != string::npos){
 // Find the letter and take the next one in the list.
 newChar = alphabet[found+1];
 }

 // Copy the character. No conversion here
 else newChar = inputMessage[i];
 // Append it into the output message
 outputMessage += newChar;

 }

 return outputMessage;
}

int main(){
 string inputMessage;

 getline(cin, inputMessage);

 paint(translate(inputMessage));

}

71

24 Ancient Formulas
15 points

Introduction
Archaeologists found ancient mathematical formulas that use parenthesis "()", brackets "[]" and
braces "{}" to group sub-expressions in order to provide better clarity than if they only used
parenthesis "()".

Here is an example: [1 + 1] + (2 + { 1 + [4 * (2 + 1) + 3]})

In any case, the meaning of these grouping symbols is equivalent and they simply indicate the opening
and closing of a sub-expression group.

Interestingly, we discovered that some of the closing symbols do not always match with the opening
symbol type. For instance, in the formula "2+({3-2]-1)" the opening symbol '{' should be closed using a
matching '}' instead of a ']' for consistency.

You should write a program that reads one of these ancient formulas and adjust any closing symbols to
match the corresponding opening symbol type.

Input
The input is one line with a formula that may contain several grouping symbols. You can assume that
the number of opening and closing symbols match and the only problem is with the consistency
between the opining type and the corresponding closing type.

Output
The output corresponds of a first line with the input formula after adjusting any closing symbols that
do not match the opening symbol types. And a second line that informs of the number of closing
symbols that had to be modified in the original formula to fix it using the format "# fixes made to the
formula."; where # is the number of changes.

Example 1

Input
2+({3-2]-1)

Output
2+({3-2}-1)
1 fixes made to the formula.

Example 2

Input
[sin(1) + rho) + phi (a + { 1 + [4 * (2 pi + 1) + b]]]

Output
[sin(1) + rho] + phi (a + { 1 + [4 * (2 pi + 1) + b]})
3 fixes made to the formula.

72

Solutions

Python3

opened="({["

closed=")}]"

Read the input

input_formula=input()

correct=""

corrections=0

queue=""

Loops though the formula chars

for character in input_formula:

 if character in opened:

 # adds opening symbols to the queue

 queue=queue+character

 correct+=character

 elif character in closed:

 # We expect to find a closing symbol equivalent

 # to the last opened.

 # Close with the equivalent of the opening

 # and increase corrections if it was different.

 exp=closed[opened.find(queue[len(queue)-1])]

 correct+=exp

 if exp!=character:

 corrections+=1

 # Remove the last symbol from the queue

 queue=queue[:len(queue)-1]

 else:

 correct+=character

print(correct)

print(corrections,"fixes made to the formula.")

73

C++

#include <iostream>

#include <string>

#include <stack>

using namespace std;

int main(){

 string line;

 stack<char> s;

 int fixes=0;

 getline(cin, line);

 for (int i=0;i<line.size();i++){

 char c = line[i];

 switch (c){

 // Save the expected closing symbol for the

 // group that is opening right now

 case '(':

 s.push(')');

 break;

 case '[':

 s.push(']');

 break;

 case '{':

 s.push('}');

 break;

 // Regenerate any closing symbol with the

 // expected closing symbol regardless of

 // whether the closing symbol was correct

 case ')':

 case ']':

 case '}':

 if (c != s.top()){

 c = s.top();

 fixes++;

 }

 s.pop();

 break;

 }

 cout << c;

 }

 cout << endl;

 cout << fixes << " fixes made to the formula." << endl;

}

74

 25 Secret door
15 points

Introduction
As every year, our grandpa Santa Claus is in his journey to deliver presents to all good girls and boys
around the world in his sleigh led by magical reindeer. But this time, and out of his imagination, the
magical sleigh crashed and Santa landed in a maze of rooms created by the Grinch. By the time Santa
recovered from this problem, there are only a few minutes until midnight and Santa is seeking help
from a good girl or boy to help him out.

The maze is as follows: every room is connected, by a secret hall, to another room and there is only one
room with an exit to the exterior, marked with a 0 (zero).

When you are in one room, you take the secret hall to another room. From there you walk to other room,
and so on until you find the exit. The path is said to be unidirectional, i.e. one room is only connected
to another room. For instance, room 1 is connected to room 3, but room 3 is not connected to room 1.
In the other hand, there are rooms that are connected to themselves, so they don’t have an exit.

For instance:
0 → 0 : has an exit by definition
1 → 3 : has an exit via 3
2 → 1 : has an exit via 1, then 3
3 → 0 : has an exit directly connected to 0
4 → 2 : has an exit via 2, then 1, then 3
5 → 5 : do not has an exit

Santa would like to know how many rooms, that are connected to the exit, are so he can continue his
journey. In the previous example, we would give Santa the answer of 5 (5 rooms with an exit). All of
them but room 5.

Would you help Santa to find the way out so he can deliver all the presents?

Input
<n> positive integer number greater than 0 indicating how many rooms there are.
<room ID> <room ID connection> for every room we give the room id and its connection.The room ID
will be between 0 and n-1. The given sequence can be in any order.

Output
Print out the positive integer indicating how many rooms have an exit.

75

Example

Input
6
0 0
1 3
2 1
3 0
4 2
5 5

Output
5

76

Solutions

Python3

EXIT_ROOM = 0 # exit room is marked with a 0

solve the problem

def solve(rooms):

 sol = 1

 for i in range(1, len(rooms)):

 visited = [0] * len(rooms)

 visited[0] = 1

 j = i

 # walk through the rooms

 # and test if we can find the exit

 while not visited[j]:

 visited[j] = 1

 if rooms[j] == EXIT_ROOM:

 sol += 1

 j = rooms[j]

 return sol

read the total number of rooms

n = input()

n = int(n)

initialize the rooms

rooms = [-1] * n

read the connection between rooms

for i in range(n):

 line = input()

 line = line.split()

 rooms[int(line[0])] = int(line[1])

sol = solve(rooms)

print(sol)

77

C++

#include <iostream>

#include <vector>

using namespace std;

const int EXIT_ROOM = 0; // exit room is marked with a 0

int solve(vector<int>& rooms) {

 int j, sol = 1;

 for (int i = 1; i < rooms.size(); i++) {

 vector<int> visited(rooms.size(), 0);

 visited[0] = 1;

 j = i;

 while (!visited[j]) {

 visited[j] = 1;

 if (rooms[j] == EXIT_ROOM) {

 sol += 1;

 }

 j = rooms[j];

 }

 }

 return sol;

}

int main() {

 int n, i, id1, id2, sol;

 // read total number of rooms

 cin >> n;

 // initialize the rooms

 vector<int> rooms(n, -1);

 // read the connections between rooms

 i = 0;

 while (i++ < n) {

 cin >> id1 >> id2;

 rooms[id1] = id2;

 }

 sol = solve(rooms);

 cout << sol << endl;

}

78

26 Skiing
20 points

Introduction
A ski station consists of lifters and slopes.

Lifters bring you uphill from a lower starting point to a higher ending point, while slopes are the other
way around. Lifters should have at least one slope connected to its starting and ending point.

Slopes have a difficulty level, which limits the maximum speed a skier can reach on them: 20 km/h on
green slopes, 30 km/h on blue slopes, 40 km/h on red slopes, and 50 km/h on black slopes. Slopes can
start or end in another slope or in a lifter. Multiple slopes and lifters can be connected.

Given a ski domain map, which contains lifters and slopes, determine the minimum time (in seconds)
needed to go from the top of the ski station to the bottom.

Note that, for the sake of simplicity, we cannot have two or more starting and ending points with the
same height. Moreover, in case of trouble, we can always call the relief helicopter, which will bring us
to the bottom of the ski resort in two hours.

Input
The map should be read as follows: The first number in the input is the number of lifters and slopes
the ski station has. Then, for each element, the input provides a letter that specifies if it is a lifter (L)
or a slope (S). For lifters, following we have the time a lifter requires to reach its end in seconds,
followed by its starting point and ending point height, both given in meters. For slopes, we have the
difficulty level, the length in kilometers, and the starting point and the ending point heights, both
given in meters as well.

Output
Print out the minimum time in seconds with a resolution of two decimals needed to go from the top of
the ski station to the bottom.

79

Example

Input
10
L 360 1500 2000
L 480 1200 1800
L 720 900 1400
S black 4.2 2000 1500
S red 5.2 2000 1200
S blue 14.3 2000 900
S green 11.2 2000 1400
S red 4.7 1400 900
S black 7.7 1800 900
S green 6.1 1800 900

Output
1502.40

Note: in this example the fastest way down is 2000 – red slope – 1200 – lifter – 1800 – black slope –
900

80

Solutions

Python3

import sys

from queue import PriorityQueue

slope_speed = { "black": 50.0, "red": 40.0,

 "blue": 30.0, "green": 20.0}

def slopeTime(color, length):

 return float(length / slope_speed[color] * 3600.0)

def readInput(g):

 n = int(input())

 last_id = -1

 #we will calculate the start and end po for the

 #algorithm while reading the input

 maxHeight = 0

 minHeight = sys.maxsize

 for _ in range(0, n):

 time = 0

 line = input().split()

 type = line[0]

 start = -1

 end = -1

 if(type == "L"):

 time = int(line[1])

 start = int(line[2])

 end = int(line[3])

 else:

 color = line[1]

 length = float(line[2])

 time = slopeTime(color, length)

 start = int(line[3])

 end = int(line[4])

 #update min and max heights

 maxHeight = max(start, end, maxHeight)

 minHeight = min(start, end, minHeight)

 #add the time from start to end to the g

 if not start in g:

 g[start] = {}

 if not end in g:

 g[end] = {}

 if not end in g[start]:

 g[start][end] = time

 else:

 #if there is more than one way from start

 #to end we store the fastest one

 g[start][end] = min(time, g[start][end])

 t = (maxHeight, minHeight)

 return t

#continues on next page...

81

#...

 def dijkstra(g, start, end):
 # You can go anywhere in at least 2 hours (helicopter)
 max_time = 2*3600
 n = len(g)
 # Store the minimum time to go from the start to any
 # other node (in the worst case helicopter)
 min_times = {}

 for v in g:
 min_times[v] = max_time

 #the time from the start to the start is always 0
 min_times[start] = 0
 pq = PriorityQueue()

 #pre-populate pq
 for v in min_times:
 pq.put((min_times[v], v))

 while not pq.empty():
 v = pq.get()

 #v_id is on [1] because of the pq implementation
 v_id = v[1]
 #for each neighbor u of v
 for u_id in g[v_id]:
 time = g[v_id][u_id]

if the minimum time we have found until now to go from
start to u is greater than the time from start to u
passing through v we update the minimum time to this
value and push u the queue with updated time
 if(min_times[u_id] > min_times[v_id]+time):
 min_times[u_id] = min_times[v_id]+time

 pq.put((min_times[u_id], u_id))

 # return the min time from start to end
 return min_times[end]

g = {}

read the input and construct the graph
maxmin = readInput(g)

start = maxmin[0]
end = maxmin[1]
Compute time using dijkstra's slgorithm
time = dijkstra(g, start , end)

print("%.2f" % time)

82

C++

#include <iostream>

#include <string>

#include <iomanip>

#include <map>

#include <vector>

#include <queue>

using namespace std;
#define MAX_INT 2147483647;

typedef pair<int, float> Node;
typedef vector< Node > Row;
typedef vector<Row> Graph;
typedef map<int, int> Dict;

//Comp class to compare pairs in the priority queue

struct Comp {
 bool operator () (const Node &a,
 const Node &b){
 if (a.second == b.second)
 return a.first < b.first;
 return a.second < b.second;
 }

};

map<string, float> slope_speed{
 {"black",50}, {"red",40}, {"blue",30}, {"green",20}
};

float slopeTime(const string& colour, float length){
 return length / slope_speed[colour] * 3600.0;
}

void addVertex(int h, int id, Graph& g, Dict& h2id){
 //generate a new ID for vertex at from height
 //and increment the id counter
 h2id[h] = id;

 Row empty_row = Row();

 //add the vector position for this id
 g.push_back(empty_row);

}

//continues on next page...

83

//...
pair<int, int> readInput(Graph& g, Dict& h2id){
 int n, last_id = -1;
 cin >> n;

 //we will calculate the start and end points for the
 //algorithm while reading the input
 int maxHeight = 0, minHeight = MAX_INT;
 for(int i = 0; i < n; i++){
 char type;
 float time;
 cin >> type;

 if(type == 'L'){
 cin >> time;

 }

 else{
 string color;

 float length;
 cin >> color >> length;

 time = slopeTime(color, length);

 }

 int start, end;
 cin >> start >> end;

 //update min and max heights
 maxHeight = max(start, max(end, maxHeight));

 minHeight = min(start, min(end, minHeight));

 // If the start height is a new height
 if(h2id.find(start) == h2id.end()){
 addVertex(start, ++last_id, g, h2id);

 }

 // If the end height is a new height
 if(h2id.find(end) == h2id.end()){
 addVertex(end, ++last_id, g, h2id);

 }

 //add the time from start to end to the g
 int start_id = h2id[start], end_id = h2id[end];
 g[start_id].push_back(make_pair(end_id, time));

 }

 return make_pair(maxHeight, minHeight);
}

//continues on next page...

84

//...
float dijkstra(const Graph& g, int start, int end){
 // You can go anywhere in at least 2 hours (helicopter)
 float max_time = 2 * 3600;
 int n = g.size();
 // The (default) minimum time to go from
 // the start to any other node (in the worst case)
 vector<float> min_times(n, max_time);
 //the time from the start to the start is always 0
 min_times[start] = 0;
 priority_queue<Node, Row, Comp> pq;

 //pre-populate pq
 for(int i = 0; i < min_times.size(); ++i){
 pq.push(make_pair(i, min_times[i]));

 }

 while(!pq.empty()){
 Node v = pq.top();

 int v_id = v.first;
 pq.pop();

 //for each neighbor u of v
 for(int i = 0; i < g[v_id].size(); ++i){
 Node u = g[v_id][i];

 int u_id = u.first;
 float time = u.second;
// if the minimum time we have found until now to go from

// start to u is greater than the time from start to u

// passing through v we update the minimum time to this

// value and push u into the queue with updated time

 if(min_times[u_id] > min_times[v_id]+time){
 min_times[u_id] = min_times[v_id]+time;

 pq.push(make_pair(u_id, min_times[u_id]));

 }

 }

 }

 return min_times[end];
}

int main(){
 Graph g;

 Dict h2id;

 // read the input and construct the graph
 pair<int, int> maxmin = readInput(g, h2id);
 int start = h2id[maxmin.first];
 int end = h2id[maxmin.second];
 float time = dijkstra(g, start , end) ;
 cout << setprecision(2) << fixed << time << endl;
}

85

27 Digital Castellers
20 points

Introduction
A Castell is a human tower built traditionally in festivals at many locations within Catalonia. People
that forms part of a Castell are known as castellers.

So, in our a computer programming contest you are requested to build digital castellers.

There are three definite parts of a digital castle; the pinya , the tronc , and the pom de dalt or the crown
of the castle.

The pinya is the base of the Castell, and it’s composed by:

• The soca, in the first floor
• The folre, in the second floor. It’s optional.
• The manilles, in the third floor. It’s optional, and only

allowed in top of a folre.

The tronc is the main visible structure of the Castell, and it’s
between the pinya and the pom de dalt. The number of
castellers in each floor of the tronc is defined in the name of
the Castell.

The pom de dalt is the top of the Castell and it’s composed by:

• The dosos, two castellers just on top of the tronc.
• The acotxador, one casteller on top of the dossos.
• The enxaneta, who crowns the Castell, on top of the

acotxador.

In addition, a Castell may have an agulla. This is a central tower
in the centre of the Castell,with the same height as the tronc.

The most common nomenclature to describe a Castell is, in
Catalan

N de M [amb X] [i Y] [i Z]

Where N, M, X, Y and Z are the variables that define the structure of the Castell.

• N is the number of castellers in each floor of the tronc, with 1 <=N <= 10
• M is the height of the Castell in castellers, with 3 <= M <= 10
• X, Y and Z are optional, and they may be, in that order

o folre
o manilles
o l’agulla

86

N and M are expressed in catalan with the following nomenclature
• Only for N

o 1 = pilar
o 2 = dos or torre

• For N and M

o 3 = tres
o 4 = quatre
o 5 = cinc
o 6 = sis
o 7 = set
o 8 = vuit
o 9 = nou
o 10 = deu

The Castells constructed by a Pilar (N = 1) does not have the dosos nor the acotxador.

The problem consists on, given a Castell description, represent it graphically

• Each casteller is represetend with a # character
• The Castell has to be as symmetrical as possible
• If the total width of the tronc is odd, there will be a space between the dosos.
• If the total width of the tronc is even, the acotxador and l’enxaneta will be in the left.

Input
A string with the definition of the castell to draw.

Output
The digital castell

Example 1

Input
quatre de set amb folre

Output

 #
 #
 ##
 ####
 ####
 ######
########

87

Example 2

Input
tres de sis

Output

 #
 #
 # #
 ###
 ###

Example 3

Input
cinc de nou amb folre i manilles

Output

 #
 #
 # #
 #####
 #####
 #####
 #######
 #########
###########

88

Solutions

Python3

import math

wordToNumber = {

 "pilar" : 1, "torre" : 2, "dos" : 2,
 "tres" : 3, "quatre" : 4, "cinc" : 5,
 "sis" : 6, "set" : 7, "vuit" : 8,
 "nou" : 9, "deu" : 10
}

Precondition: the command is correctly constructed
def parseCastell(nomCastell):
 words = nomCastell.lower().split()

 # Get n (people per floor)
 n = wordToNumber[words[0]]
 # Skip words[1] = de
 # Get m (number of floors)
 m = wordToNumber[words[2]]
 folre = "folre" in words
 manilles = "manilles" in words
 agulla = "l'agulla" in words
 return n, m, folre, manilles, agulla

def buildCastell (n, m, ambFolre, ambManilles, ambAgulla):
 # width "pinyes"
 soca = n + 2 + ambAgulla
 folre = 0
 manilles = 0

 if (ambFolre):
 soca = n + 4 + ambAgulla
 folre = n + 2 + ambAgulla

 if (ambManilles):
 soca = n + 6 + ambAgulla
 folre = n + 4 + ambAgulla
 manilles = n + 2 + ambAgulla

 castell = "#" * soca

 offset = 0
 if (ambFolre):
 offset = offset + 1
 castell = " " * offset + "#" * folre + "\n"+ castell

 # continues on next page ...

89

#...

 if (ambManilles):

 offset = offset + 1

 castell = " " * offset + "#" * manilles +\

 "\n"+ castell

 offset = offset + 1

 # Tronc

 if (n > 1):

 tronc = m - 3 - ambManilles - ambFolre - 1

 for i in range(tronc):

 castell = " " * offset + "#" * (n+ambAgulla) +\

 "\n"+ castell

 # Dossos

 offset = math.floor(offset + ((n+ambAgulla) / 2)) - 1

 if (n+ambAgulla)%2 == 0:

 castell = " " * offset + "#" * 2 + "\n"+ castell

 else:

 castell = " " * offset + "# #" + "\n"+ castell

 offset = offset + 1

 #Acotxador

 castell = " " * offset + "#" + "\n"+ castell

 #Enxaneta

 castell = " " * offset + "#" + "\n"+ castell

 else:

 tronc = m - ambManilles - ambFolre - 1

 for i in range(tronc):

 castell = " " * offset + "#" * (n+ambAgulla) +\

 "\n"+ castell

 return castell

def main():

 nomCastell = input()

 n, m, folre, manilla, agulla = parseCastell(nomCastell)

 castell = buildCastell(n, m, folre, manilla, agulla)

 print(castell)

main()

90

C++

#include<iostream>

#include<string>

#include<vector>

#include<map>

using namespace std;

map<string, int> catalan_number = {
 {"pilar", 1}, {"dos", 2}, {"torre", 2},
 {"tres", 3}, {"quatre", 4}, {"cinc", 5},
 {"sis", 6}, {"set", 7}, {"vuit", 8},
 {"nou", 9}, {"deu", 10}
};

void parseInput(int& n, int& m,
 bool& folre, bool& manilles, bool& agulla){
 string N, de, M, token;

 cin >> N >> de >> M; //N de M
 if(cin >> token){ //amb
 cin >> token; //folre
 folre = true;
 if(cin >> token){//i
 cin >> token; //manilles
 if(token == "manilles"){
 manilles = true;
 if(cin >> token){//i
 cin >> token; //l'agulla
 agulla = true;
 }
 }

 else{
 agulla = true;
 }

 }

 }

 n = catalan_number[N]; m = catalan_number[M];

}

void drawCastell(int pinya, int troncH, int troncW){
 int m = pinya+troncH+3;
 if(troncW == 1) m = pinya+troncH+1;
 vector<string> castell = vector<string>(m);

 //pinya
 for(int i = pinya-1; i >= 0; --i){
 string nivell = "";
 //spaces
 for(int j = 0; j < i; ++j){
 nivell += ' ';
 }

 //castellers
 for(int j = 0; j < troncW+2*pinya-2*i; ++j){
 nivell+='#';
 }

 castell[i] = nivell;

 }

 //continues on next page...

91

//...

//tronc
 for(int i = pinya; i < pinya+troncH; ++i){
 string nivell = ""; //spaces
 for(int j = 0; j < pinya; ++j){
 nivell += ' ';
 }//catsellers
 for(int j = 0; j < troncW; ++j){
 nivell+='#';
 }

 castell[i] = nivell;

 }

 //dossos are not present on pilars
 if(troncW > 1){
 string dossos; //spaces
 for(int j = 0; j < pinya+(troncW/2)-1; ++j){
 dossos += ' ';
 } //castellers
 if(troncW % 2 != 0)
 dossos += "# #";
 else dossos += "##";
 castell[pinya+troncH] = dossos;

 }

 //acotxador and enxaneta
 string acotxaneta;

 int num_espais = pinya+(troncW/2);
 if(troncW % 2 == 0) --num_espais;
 //spaces
 for(int j = 0; j < num_espais; ++j)
 acotxaneta += ' ';
 //castellers
 acotxaneta += "#";
 //acotxadors are not present in pilars
 if(troncW > 1){
 castell[pinya+troncH+1] = acotxaneta;
 castell[pinya+troncH+2] = acotxaneta;
 }

 else
 castell[pinya+troncH] = acotxaneta;

 //print castell
 for(int i = m-1; i >= 0; --i)
 cout << castell[i] << endl;

}

int main(){
 int n,m;
 bool folre = false, manilles = false, agulla = false;
 parseInput(n,m,folre,manilles,agulla);

 int pinyaH = 1 + int(folre) + int(manilles);
 int troncW = n + int(agulla);
 int troncH = m - pinyaH - 3;
 if(troncW == 1) troncH = m - pinyaH - 1;
 drawCastell(pinyaH,troncH,troncW);

}

92

28 Meowy’s Island
20 points

Introduction
Meowy, the adventurer cat, has found a new island to live during his journeys. However, this island has
a very irregular terrain and it is quite singular: the sea level grows rapidly during the day. The problem
is that Meowy hates water, although he thinks that the island is really beautiful. So he needs to know
the level of the sea at every hour in order to avoid flooded areas.

Meowy has studied the island carefully, thus he knows the following:

- There is a map of the island represented as a grid, where the sea cells are marked with '.' and the island
cells contain a height value in the interval [1,9].

- When the sea level increases, the water from a cell floods the neighboring cells (consider the 8
directions: north, north-east, east, south-east, south, south-west, west, north-west) only if the height
of the neighboring cell is less or equal than the sea level.

- There might be holes in the island (cells with lesser height than the surrounding cells, see top right
part of the island in the Example 2). Holes are flooded only when at least one of the surrounding higher
cells are covered by the sea.

- There might be sea cells inside the island (see bottom left part of the island in Example 2).

Input
The input of the program is:
< The rows of the map. >
< The columns of the map. >
< The values of the height map. >
< The initial sea level. >
< The final sea level. >

Output
The state of the map at every height level of the sea. Cells with water are represented by a 'W' and
cells without water are represented with a space ' '.

93

Example 1

Input
10
29
.............................
.12............55555.........
..222223344....41115.........
...79972347774479974241155...
...7..85575335473373443......
...7788547473557972..........
..493285.743754721222........
.558.275..77...9..212........
.553443...........222........
.............................
0
5

Output
Sea level: 0
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
W WWWWWWWWWWWW WWWWWWWWW
WW WWWW WWWWWWWWW
WWW WWW
WWW WW WWWWWW
WWW WWWWWWWWWW
WW W WWWWWWWW
W W WW WWW WW WWWWWWWW
W WWWWWWWWWWW WWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Sea level: 1
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WW WWWWWWWWWWWW WWWWWWWWW
WW WWWW WWWWWWWWW
WWW WW WWW
WWW WW WWWWWW
WWW WWWWWWWWWW
WW W W WWWWWWWW
W W WW WWW WW WWWWWWWW
W WWWWWWWWWWW WWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Sea level: 2
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWW WWWWWWWWW
WWWWWWW WWWW WWWWWWWWW
WWW W W WW WWW
WWW WW WWWWWW
WWW WWWWWWWWWWW
WW W W WWWWWWWWWWWWW
W WW WW WWW WWWWWWWWWWWWW
W WWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

94

Sea level: 3
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWW WWWWWWWWW
WWWWWWWWW WWWW WWWWWWWWW
WWW WW W WW WWW
WWW WW WW WW W WWWWWWW
WWW W WWWWWWWWWWW
WW WW W W WWWWWWWWWWWWW
W WW WW WWW WWWWWWWWWWWWW
W W WWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Sea level: 4
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWW WWWWWWWWW
WWWWWWWWWWWWWWWWWWW WWWWWWWWW
WWW WWW WW WWWWW WWW
WWW WW WW W WW WWWWWWWWWW
WWW W W W WWWWWWWWWWW
WWW WW W WW W WWWWWWWWWWWWW
W WW WW WWW WWWWWWWWWWWWW
W WWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Sea level: 5
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWW WWW WW WWWWWWWWWW
WWW WW WW WWWWW WW WWWWWWWWWW
WWW WW W WWW WWWWWWWWWWW
WWW WW WW WW WW WWWWWWWWWWWWW
WWW WW WWW WWW WWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

95

Example 2

Input
15
31
...............................
.333.............4444444.......
.323...........6644444411......
.333.........4666644443233.....
..33333333..666666644..33......
.3322233334444444444...21......
.332.2.3355444455445333333333..
.3322233544544544445...233223..
..322334555544544445...233..3..
..33334454454445544555..33333..
...321...332234...2222333......
...24446666666666666666444.....
..22147777777777777777774......
..211..444444444444444444......
...............................
0
4

Output
Sea level: 0
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
W WWWWWWWWWWWWW WWWWWWW
W WWWWWWWWWWW WWWWWW
W WWWWWWWWW WWWWW
WW WW WW WWWWWW
W WWW WWWWWW
W W W WW
W WWW WW
WW WWW WW WW
WW WW WW
WWW WWW WWW WWWWWW
WWW WWWWW
WW WWWWWW
WW WW WWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

96

Sea level: 1
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
W WWWWWWWWWWWWW WWWWWWW
W WWWWWWWWWWW WWWWWWWW
W WWWWWWWWW WWWWW
WW WW WW WWWWWW
W WWW WWWWWWW
W W W WW
W WWW WW
WW WWW WW WW
WW WW WW
WWW WWWW WWW WWWWWW
WWW WWWWW
WW W WWWWWW
WW WWWW WWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Sea level: 2
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
W WWWWWWWWWWWWW WWWWWWW
W WWWWWWWWWWW WWWWWWWW
W WWWWWWWWW W WWWWW
WW WW WW WWWWWW
W WWW WWWWWWWWWWW
W WWWW WW
W WWW WWWW WW WW
WW WW WWWW WW WW
WW WW WW
WWW WWWWW WWWWWWW WWWWWW
WWWW WWWWW
WWWWW WWWWWW
WWWWWWW WWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Sea level: 3
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWW WWWWWWW
WWWWWWWWWWWWWWW WWWWWWWW
WWWWWWWWWWWWW WWWWWWWWW
WWWWWWWWWWWW WWWWWWWWWW
WWWWWWWWWW WWWWWWWWWWW
WWWWWWWWW WWWWWWWWWWW
WWWWWWWW WWWWWWWWWWW
WWWWWWW WWWWWWWWWWW
WWWWWW WWWWWWWWW
WWWWWWWWWWWWWW WWWWWWWWWWWWWWWW
WWWW WWWWW
WWWWW WWWWWW
WWWWWWW WWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

97

Sea level: 4
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWW WWWWWWWWWWWWWW
WWWWWWWWWWWWWW WWWWWWWWWWWWW
WWWWWWWWWWWW WWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWW WWWW WW WWWWWWWWWWW
WWWWWWWW WW WW WWWW WWWWWWWWWWW
WWWWWWWW WW WWWW WWWWWWWWWWW
WWWWWWWW WW WWW WW WWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWW WWWWWWWW
WWWWWW WWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

98

Solutions

Python3

def getNeighbours(cell, nRows, nCols):

 # Returns the list of neighbours of a cell

 (row, col) = cell

 listNeighbours = []

 for i in [-1, 0, 1]:

 for j in [-1, 0, 1]:

 if 0 <= i + row < nRows and 0 <= j + col < nCols:

 listNeighbours.append((row + i, col + j))

 return listNeighbours

def expand(cell, heights, final, visited, level):

 # From cell, it expands the water to the other cells.

 # Cell has always water.

 if cell in visited: return

 nRows = len(heights)

 nCols = len(heights[0])

 visited.add(cell)

 listNeighbours = getNeighbours(cell, nRows, nCols)

 for (i, j) in listNeighbours:

 if heights[i][j]=='.' or int(heights[i][j]) <= level:

 final[i][j] = 'W'

 expand((i, j), heights, final, visited, level)

def calculateMap(heights, level):

 # calculates the resulting map from a heights

 # and a level of water

 nRows = len(heights)

 nCols = len(heights[0])

 visited = set()

 final = [[' '] * nCols for _ in range(nRows)]

 for i in range(nRows):

 for j in range(nCols):

 if heights[i][j] == '.':

 expand((i, j), heights, final, visited, level)

 return final

continues on next page...

99

...
def checkAnswer(heights, final, level):
 # Checks if a map representing a solution of the
 # problem (final) is OK
 nRows = len(heights)
 nCols = len(heights[0])
 for i in range(nRows):
 for j in range(nCols):
 if final[i][j] == 'W':
 meAndNeighbours = getNeighbours((i, j),\

 nRows, nCols) + [(i, j)]

 assert any((heights[a][b] == '.'\
 or int(heights[a][b]) <= level\
 for (a, b) in meAndNeighbours))
 else:
 if int(heights[i][j]) <= level:
 neighbours = getNeighbours((i,j), nRows, nCols)

 assert all((heights[a][b] != '.'\
 for (a, b) in neighbours))

get input data
nRows = int(input())
nCols = int(input())
heights = []

for _ in range(nRows):
 heights.append(input())
iniLevel = int(input())
endLevel = int(input())

for level in range(iniLevel, endLevel + 1):
 final = calculateMap(heights, level)

 # print map
 print("Sea level:", level)
 for row in final:
 print(''.join(row))

100

C++

#include <iostream>

#include <vector>

#include <stack>

using namespace std;

typedef vector<bool> RowBool;
typedef vector<RowBool> MatrixBool;

typedef vector<int> RowInt;
typedef vector<RowInt> MatrixInt;

struct Position{
 int i; int j;
 Position(int ii, int jj) : i(ii), j(jj) {}
};

void printMap(const MatrixBool& map, int level)
{

 cout << "Sea level: " << level << endl;
 for (int i = 0; i < map.size(); ++i){
 for (int j = 0; j < map[i].size(); ++j){
 cout << (map[i][j]? 'W': ' ');
 }

 cout << endl;

 }

}

void applyFlood(const MatrixInt & map, int level, MatrixBool& flooded,
int row, int col){
 stack<Position> st;

 st.push(Position(row, col));

 while (!st.empty()){
 Position pos = st.top(); st.pop();

 flooded[pos.i][pos.j] = true;
 // Flood previous row
 if (pos.i > 0){
 if (pos.j > 0 && !flooded[pos.i-1][pos.j-1] &&
 map[pos.i-1][pos.j-1] <= level){
 st.push(Position(pos.i-1, pos.j-1));
 }

 if (!flooded[pos.i-1][pos.j]
 && map[pos.i-1][pos.j] <= level){
 st.push(Position(pos.i-1, pos.j));
 }

 if (pos.j+1 < map[0].size() && !flooded[pos.i-1][pos.j+1]
 && map[pos.i-1][pos.j+1] <= level){
 st.push(Position(pos.i-1, pos.j+1));
 }

 }

 // Flood current row
 if (pos.j > 0 && !flooded[pos.i][pos.j-1]
 && map[pos.i][pos.j-1] <= level){
 st.push(Position(pos.i, pos.j-1));
 }

 //continues on next page...

101

 //...
 if (pos.j+1 < map[0].size() && !flooded[pos.i][pos.j+1]
 && map[pos.i][pos.j+1] <= level){
 st.push(Position(pos.i, pos.j+1));
 }

 // Flood next row
 if (pos.i+1 < map.size()){
 if (pos.j > 0 && !flooded[pos.i+1][pos.j-1]
 && map[pos.i+1][pos.j-1] <= level){
 st.push(Position(pos.i+1, pos.j-1));
 }

 if (!flooded[pos.i+1][pos.j]
 && map[pos.i+1][pos.j] <= level){
 st.push(Position(pos.i+1, pos.j));
 }

 if (pos.j+1 < map[0].size()
 && !flooded[pos.i+1][pos.j+1]
 && map[pos.i+1][pos.j+1] <= level){
 st.push(Position(pos.i+1, pos.j+1));
 }

 }

 }

}

MatrixBool applySeaLevel(const MatrixInt& map, int level){
 MatrixBool flooded(map.size(),

 RowBool(map[0].size(), false));
 // Loop over the map, start a flood from every "sea" cell
 for (int i = 0; i < map.size(); ++i)
 for (int j = 0; j < map[i].size(); ++j)
 if (!flooded[i][j] && map[i][j] == 0)
 applyFlood(map, level, flooded, i, j);

 return flooded;
}

int main(){
 int rows = 0, cols = 0;
 cin >> rows >> cols;

 MatrixInt map(rows, RowInt(cols, 0));
 for (int i = 0; i < rows; ++i)
 for (int j = 0; j < cols; ++j){
 char c;
 cin >> c;

 if (c >= '1' && c <= '9')
 map[i][j] = int(c - '0');
 }

 int minSeaLevel, maxSeaLevel;
 cin >> minSeaLevel >> maxSeaLevel;

 for (int level = minSeaLevel; level <= maxSeaLevel; ++level)
 printMap(applySeaLevel(map, level), level);

}

102

29 Hexagons
23 points

Introduction
Clusters of hexagonal columns known as the Giant's Causeway can be found along the coast of Northern
Ireland. Legends claim the causeway was built by Irish giant Finn MacCool, who had been challenged to
a fight by Scottish giant Benandonner.

The columns vary in height, and some have a small hole in the top. When the waves break with the
columns, sometimes fishes get trapped in the holes.

Foxes live in the area, and they love to eat fish. To get the trapped fishes, a fox has to move above the
columns. Each fox has two characteristics: the maximum jump, and the maximum fall it can survive. A
fox only can jump to a near hexagon if it differential height is less or equal to its maximum jump, and
only can fall to a near hexagon if the differential height is less or equal to its maximum fall it can
survive.

We can identify each hexagonal column using a (x,y) notation using the following convention:

103

Y-Axis

We want to know if a fox positioned in a certain hexagon is able to get a certain fish.

Input
- Multiple lines, each one with a hexagon x,y coordinates and its height
- Line with end character #
- Multiple lines, each one with the maximum jump, the maximum fall and the fox and the fish
coordinates

Output
For each line with a fox and fish description:
- If exists a path: “The fox says: what a delicious fish!”
- If not: “The fish says: not today, little fox!”

104

Example

Input
0 0 0
0 1 1
0 2 2
0 3 5
0 4 0

0 0 0 0 0 0
1 1 0 0 0 2
1 1 0 0 0 3
3 1 0 0 0 3
3 1 0 0 0 4
3 5 0 0 0 4

Output
The fox says: what a delicious fish!
The fox says: what a delicious fish!
The fish says: not today, little fox!
The fox says: what a delicious fish!
The fish says: not today, little fox!
The fox says: what a delicious fish!

105

Solutions

Python3

class HexagonBoard:
 def __init__(self):
 self.hexagons = {}

 def addHexagon(self, x, y, height):
 self.hexagons[x,y] = height

 def getNeighbors(self, x, y):
 return [(x,y+1),(x+1,y),(x+1,y-1),(x,y-1),(x-1,y),(x-1,y+1)]

 def existsPath(self, xs, ys, xt, yt, maxJump, maxFall):
 # set of accesible hexagons but not explored yet
 explored = set()
 toExplore = {(xs,ys)}

 # True if a path exists betwen (xs,ys) and (xt,yt)
 found = False
 while (not found) and (len(toExplore) > 0):
 # Get an unexplored hexagon
 (cx,cy) = toExplore.pop()

 # Check if it's the target
 if (cx,cy) == (xt, yt):
 found = True
 else:
 # Add the accesible hexagons to the list toExplore
 for i,j in self.getNeighbors(cx,cy):
 # Check if neighbours hexagons has been defined
 # and has not been explored
 if (i,j) in self.hexagons and not (i,j) in explored:
 height = self.hexagons[i,j] - self.hexagons[cx,cy]
 if height <= maxJump and height >= maxFall:
 toExplore.add((i,j))

 # Mark the hexagon as explored (not explore it again)
 explored.add((cx,cy))

 return found
continues on next page...

106

...

def main():
 hb = HexagonBoard()

 # Read hexagons and heights
 line = input()
 while line != "#":
 nums = line.split()

 x = int(nums[0])
 y = int(nums[1])
 height = int(nums[2])
 hb.addHexagon(x,y,height)

 line = input()

 # Read paths to find until end of file
 line = input()
 while True:
 nums = line.split()

 maxJump = int(nums[0])
 maxFall = -int(nums[1])
 xs = int(nums[2])
 ys = int(nums[3])
 xt = int(nums[4])
 yt = int(nums[5])

 if hb.existsPath(xs,ys,xt,yt, maxJump, maxFall):
 print("The fox says: what a delicious fish!")
 else:
 print("The fish says: not today, little fox!")
 try:
 line = input()
 except EOFError:
 break

main()

107

C++

#include <iostream>

#include <vector>

#include <set>

#include <sstream>

#include <map>

#include <string>

using namespace std;

class Hexagon{

public:

 int x, y, h;

 set<Hexagon*> links;

 Hexagon(int x, int y, int h){

 this->x = x;

 this->y = y;

 this->h = h;

 }

};

bool isWayFromFoxToFish(Hexagon* hex, set<Hexagon*> &path,

 int jump, int fall, int fix, int fiy){

 bool reach = false;

 if (path.count(hex) > 0) return false;

 if (hex->x == fix && hex->y == fiy) return true;

 path.insert(hex);

 set<Hexagon*>::iterator it;

 for (it = hex->links.begin();

 it != hex->links.end() && !reach; ++it){

 if (*it != hex){

 int gap = (*it)->h - hex->h;

 if ((gap == 0) || (gap > 0 && gap <= jump)

 or (gap < 0 && -gap <= fall))

 reach |= isWayFromFoxToFish(*it, path, jump,

 fall, fix, fiy);

 }

 }

 path.erase(hex);

 return reach;

}

 // continues on next page...

108

// ...
void insertAndConnect(map<string, Hexagon*> &grid, int x,
 int y, int h){
// Insert

 Hexagon *hex = new Hexagon(x, y, h);
// Connect

 for (int i = -1; i <= 1; i++){
 for (int j = -1; j <= 1; j++){
 if ((i+j > -2) && (i+j < 2) && ((i+x) != x
 || (j+y) != y)){

 ostringstream s;

 s << x+i << "-" << y+j;
 string key(s.str());

 map<string, Hexagon*>::iterator it;

 it = grid.find(key);

 if (it != grid.end()){
 it->second->links.insert(hex);

 hex->links.insert(it->second);

 }

 }

 }

 }

 ostringstream s;

 s << x << "-" << y;
 string key(s.str());

 grid[key] = hex;

}

int main(){
 map<string, Hexagon*> grid;

 string x;

 int y, h;
 cin >> x;

 while (x != "#"){
 cin >> y >> h;

 insertAndConnect(grid, stoi(x), y, h);

 cin >> x;

 }

 set<Hexagon*> path;

 int maxjump, maxfall, foxx, foxy, fishx, fishy;
 while (cin >> maxjump >> maxfall >> foxx >> foxy
 >> fishx >> fishy){

 ostringstream s;

 s << foxx << "-" << foxy;
 string key(s.str());

 path.clear();

 if (isWayFromFoxToFish(grid[key], path, maxjump,
 maxfall, fishx, fishy))

 cout << "The fox says: what a delicious fish!";
 else cout << "The fish says: not today, little fox!";
 cout << endl;

 }

}

109

30 Maze
23 points

Introduction
Calculate the shortest path from the entry square to the exit square in a given maze of size DimX x
DimY. The entry will be in the bottom left of the maze and the exit in the upper right of maze. The
movements along the maze can be one square up, down, right or left.

In this example it is shown a maze of 7 x 7

RESTRICTIONS:
DimX > 1
DimY > 1
N ≥ 0
0 ≤ OXRnR,DXRnR ≤ DimX
0 ≤ OYRnR,DYRnR ≤ DimY

Input
For each test, the first line will be DimX, number of columns of the maze.
The second line will be DimY, number of rows of the maze.
The third line will be N, number of walls in the maze.
The next N lines will be “OXn, OYn, DXn, DYn”, the coordinates of the origin and the destiny of the
wall n.

Output
The output must one line. It will contain the distance from the entry to the exit. In case it is
impossible to reach the exit the output will be -1.

X

Y

110

Example 1

Input
7
7
0

Output
12

Example 2

Input
7
7
2
0,1,6,1
1,4,7,4

Output
24

Example 3

Input
7
7
2
0,2,3,2
3,2,3,0

Output
-1

111

Solutions

Python3

import queue

dirs = [

 {'x': 1, 'y': 0}, {'x': -1, 'y': 0},

 {'x': 0, 'y': 1}, {'x': 0, 'y': -1}

]

class Cell(object):

 def __init__(self, x, y, end = False):

 self.x = x

 self.y = y

 self.visited = False

 self.distance = 0

 self.end = end

 def visit(self, distance):

 self.visited = True

 self.distance = distance + 1

 def wall(self, line, eje, posEje, posPerp, positive):

 perp = not eje

 return line[0+eje] == posEje+positive\

 and line[2+eje] == posEje+positive\

 and ((line[0+perp] <= posPerp\

 and line[2+perp] >= (posPerp+1))\

 or (line[2+perp] <= posPerp\

 and line[0+perp] >= (posPerp+1)))

 def move(self,dir,bloqueos,dx,dy):

 mx = dir['x']; my = dir['y']

 moves = [{'along' : self.x, 'perp': self.y,\

 'dir' : mx, 'dist' : dx},

 {'along' : self.y, 'perp': self.x,\

 'dir' : my, 'dist' : dy}]

 for mov in moves:

 if mov['dir'] != 0:

 if mov['along']+mov['dir'] <= mov['dist'] - 1\

 and mov['along']+mov['dir'] >= 0:

 for line in bloqueos:

 if self.wall(line, abs(my), mov['along'],\

 mov['perp'], max(mov['dir'], 0)):

 return False

 return True

 return False

dx = int(input()); dy = int(input())

112

num_lines = int(input())
lines = []

for i in range(num_lines):
 inp = input()
 inp_array = inp.split(',')
 lines.append((int(inp_array[0]), int(inp_array[1]),\
 int(inp_array[2]), int(inp_array[3])))

maze=[]

for x in range(dx):
 column = []

 for y in range(dy):
 cell = Cell(x,y)

 column.append(cell)

 maze.append(column)

Last cell
maze[dx-1][dy-1] = Cell(dx-1, dy-1, True)

my_q = queue.Queue()

First cell
my_q.put(maze[0][0])
distance = -1
maze[0][0].visit(distance)
end = False

while not my_q.empty() and not end:
 cell = my_q.get()

 distance = maze[cell.x][cell.y].distance

 end = end or maze[cell.x][cell.y].end

 for dir in dirs:
 canMove = cell.move(dir, lines, dx, dy)
 if canMove:
 mx = dir['x']; my = dir['y']
 if (not maze[cell.x+mx][cell.y+my].visited):
 my_q.put(maze[cell.x+mx][cell.y+my])

 maze[cell.x+mx][cell.y+my].visit(distance)

if not end:
 distance = -1
print(distance)

113

C++

#include <algorithm> //minmax

#include <iostream>

#include <queue>

#include <tuple> //tie

#include <vector>

using namespace std;

struct Cell{

 int d = 0; //the distance from the start to the cell

 int x; int y; //the coordinates of the cell

};

typedef vector<Cell> Elem;

typedef vector<Elem> Row;

typedef vector<Row> Grid;

typedef vector<vector<bool>> MatBool;

bool canMove(Cell c1, Cell c2, const Grid& map){

 Elem blocked = map[c1.x][c1.y];

 for(int k = 0; k < blocked.size(); ++k){

 if(blocked[k].x == c2.x and blocked[k].y == c2.y)

 return false;

 }

 return true;

}

void visit(Cell v, int dx, int dy, const Grid& map,

 MatBool& visited, queue<Cell>& Q, int n, int m){

 Cell u;

 //calculate the position of the new cell to visit

 u.x = v.x + dx;

 u.y = v.y + dy;

 //the distance to u is the distance to v + 1

 u.d = v.d + 1;

 //test that u is inside the grid

 //that there is not a wall in the way from v to u

 //and that we have not visited u already

 if(not (u.x < 0 or u.x >= n or u.y < 0 or u.y >= m)

 and canMove(v, u, map) and not visited[u.x][u.y]){

 //put u in the queue to visit it in the future

 Q.push(u);

 //mark the position so we don't visit it again

 visited[u.x][u.y] = true;

 }

}

//continues on next page...

114

 //...

int found(const Grid& map, MatBool& visited, int n, int m){
 //make a queue with the cells left to see
 queue<Cell> Q;

 Cell start;

 start.x = 0; start.y = 0; //start by the position 0,0
 Q.push(start);

 //mark the position so we don't see it again
 visited[start.x][start.y] = true;
 //while we still have cells left to see
 while(not Q.empty()){
 Cell v = Q.front(); Q.pop();

 //if we reach the end return the distance traveled
 if (v.x == n-1 and v.y == m-1){
 return v.d;
 }

 //if we don't, try to visit all neighbour cells
 visit(v, 1, 0, map, visited, Q, n, m);
 visit(v, -1, 0, map, visited, Q, n, m);
 visit(v, 0, -1, map, visited, Q, n, m);
 visit(v, 0, 1, map, visited, Q, n, m);
 }

 //no more cells to see and did not find the end

 return -1;
}

void fillGrid(Grid& map, int sX, int sY, int eX, int eY){
 Cell c1, c2;

 if(sY == eY){ //horizontal
 //sX and eX may come in any order, we need to make sure
 //that sX is the minimum of the two
 //we swap sX and eX only if they are not in order
 //http://www.cplusplus.com/reference/algorithm/minmax/
 //http://www.cplusplus.com/reference/tuple/tie/
 tie(sX, eX) = minmax({sX, eX});
 //the cells along the wall will be the ones at
 //sY-1 and eY (since sY and eY are equal)
 --sY;

 //block every pair of cells along the walls
 for(int x = sX; x < eX; ++x){
 c1.x = c2.x = x;
 c1.y = sY; c2.y = eY;

 map[x][sY].push_back(c2);
 map[x][eY].push_back(c1);

 }

 }

//continues on next page...

115

//...

 //the same for vertical
 else{
 tie(sY, eY) = minmax({sY, eY});

 --sX;
 for(int y = sY; y < eY; ++y){
 c1.x = sX; c2.x = eX;

 c1.y = c2.y = y;

 map[sX][y].push_back(c2);
 map[eX][y].push_back(c1);

 }

 }

}

int main (){
 int n,m, num_map;
 cin >> n >> m >> num_map;

 Grid map(n, Row(m, Elem(0)));
 for(int i = 0; i < num_map; ++i){
 int sX, sY, eX, eY;
 char u;
 //input the wall coordinates separated by a comma
 cin >> sX >> u >> sY >> u >> eX >> u >> eY;
 fillGrid(map, sX, sY, eX, eY);
 }

 MatBool visited(n, vector<bool>(m, false));
 int d = found(map, visited, n, m);
 cout << d << endl;

}

116

31 Keyboard
30 points

Introduction
Nowadays, being proficient in English is mandatory. You know that, and that’s why you’ve spent the
last months studying hard for an official English exam. Since you’re a computer programmer, you’ve
chosen to do the computer based exam. The first part of the exam is the writing test. You arrive at the
room, you sit in front of the computer and… OMG! The keyboard is not a standard one! It has several
letters in each key.

You need to do the writing test with that strange keyboard. You have a text you have to write using that
keyboard and you need to minimize the number of mistakes.

The length of the text you want to write and the text you will actually write must be the same. A mistake
occurs when the letter of the ith position in the ideal text is not the same as the letter in the ith position
in the real text.

For example, imagine you want to write HELLO_WORLD and you have 5 different keys, with the
following letters each key:

HEL
O_WOKLD
WOR
HE
LL

The best way to write HELLO WORLD is HE|LL|O_WOKLD. In that case we’ve used the 2nd, 4th and 5th
keys and we’ve done 1 mistake. We’ve written a K instead of an R.

Input
Each case consist of the word W you want to write, then the number N of keys in the keyboard
followed by N different sets of letters.

Output
Print the minimum number of mistakes you’ll do when you want to write the word W using this strange
keyboard. Remember that W and the word you’ll actually write must have the same length. If no
combination of keys gives a word of the same length as W, print -1.

117

Example 1

Input
HELLO_WORLD
5
HEL
O_WOKLD
WOR
HE
LL

Output
1

Example 2

Input
WE_ARE_THE_CHAMPIONS
9
ADKE_
__
ARE
CHAM_PIO
DDKK
WEEEE
W
KLLLE
IIWW

Output
9

118

Solutions

Python3

import math

read the data

WORD = input()

n = int(input())

setWords = []

for _ in range(n):

 setWords.append(input())

sort setWords by length

setWords.sort(key=lambda x: len(x))

each position "i" indicates the minimum number of

mistakes you can do to write the subword WORD[:i]

mistakes = [0] + [float('inf')] * len(WORD)

for i in range(len(WORD)):

 maxLenSubWord = i+1

 minNumMistakes = float('inf')

 for w in setWords:

 # If w is larger than WORD[:maxLenSubWord] we stop

 # looking more words in setWords, because they will

 # be larger than the current word (w)

 if len(w) > maxLenSubWord:

 break

 subword = WORD[maxLenSubWord-len(w):maxLenSubWord]

 numMistakes = sum(w[j] != subword[j]\

 for j in range(len(w)))\

 + mistakes[maxLenSubWord-len(w)]

 minNumMistakes = min(minNumMistakes, numMistakes)

 mistakes[maxLenSubWord] = minNumMistakes

print the answer

totalMinMistakes = mistakes[-1]

if totalMinMistakes < float('inf'):

 print(totalMinMistakes)

else:

 print(-1)

119

C++

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int getNumMistakes(string ideal, string real)

{

 int numErr = 0;

 for (int i = 0; i < ideal.size(); i++){

 if (ideal[i] != real[i]) numErr++;

 }

 return numErr++;

}

int main()

{

 string word;

 cin >> word;

 int numKeys = 0;

 int maxMistakes = word.size();

 cin >> numKeys;

 vector< string > keys(numKeys);

 vector< int > mistakes(word.size(), maxMistakes +1);

 for (int i = 0; i < numKeys; ++i) cin >> keys[i];

 for (int i = 0; i < word.size(); i++){

 int minErr = maxMistakes +1;

 for (int j = 0; j < keys.size(); j++){

 if (keys[j].size() > i+1) continue;

 string subWord = word.substr((i+1)-

keys[j].size(),

keys[j].size());

 int numMistakes = getNumMistakes(subWord,

keys[j]);

 int posPrevKey = i - keys[j].size();

 if (posPrevKey >= 0)

 numMistakes += mistakes[posPrevKey];

 if (numMistakes < minErr) minErr = numMistakes;

 }

 mistakes[i] = minErr;

 }

 if (mistakes[mistakes.size() - 1] <= maxMistakes)

 cout << mistakes[mistakes.size() -1] << endl;

 else cout << -1 << endl;

}

