
Problems CodeWars 2019
Barcelona Problems

3

2019

Problem Points
1 Coordinates arranger 1
2 Lemonade 1
3 Where will the wedding take place? 2
4 Abel wants to play 4-9! 3
5 Rating movies 3
6 Shopping list for a party 3
7 A mirror on the Moon 3
8 The modern teacher 4
9 King Africa 4

10 BanBot 5
11 Lottery algorithm 5
12 Environmental footprint 6
13 Double checking internet facts 6
14 Zombie attack 7
15 Save the CodeWars 8
16 Life on Mars 9
17 Sator Arepo 9
18 The Arrangers 9
19 Pattern recognition 12
20 Droid maker 13
21 Happy new year 2019 13
22 Vigenère 13
23 X marks the spot 13
24 Smart spreadsheet 14
25 Juno's calculator 15
26 Playing 4-9! 15
27 Rolling dice game 17
28 Network graph 20
29 Blobs 22
30 Quantum gates 23
31 Settlers of CodeWars 24
32 The Dragon King 31

5

2019

1 Coordinates arranger
1 point

Introduction
The last model of the “dy” augmented reality glasses includes three sensors which tell you the position of
the focus point where the user is staring at. The position is represented by three values x, y and z. Your goal
is to read the coordinates of the point from the sensors and print the point coordinates, arranging them
according to the (x, y, z) format.

Input
The input consists of integer values that represent the coordinates x, y and z of a 3D point, one by line.
<x value>
<y value>
<z value>

Output
Print out the 3D point coordinates following this output format:
(x, y, z)

Example 1

Input
3
4
5

Output
(3, 4, 5)

Example 2

Input
0
-7831
2323

Output
(0, -7831, 2323)

Python3

a=input()
b=input()
c=input()

print('(' + a + ', ' + b + ', ' + c + ')')

6

2019

C++

#include <iostream>
int main() {
 int x, y, z;
 std::cin >> x >> y >> z;
 std::cout << "(" << x << ", " << y << ", " << z << ")" << std::endl;
}

7

2019

2 Lemonade
1 point

Introduction
A group of students want to earn some money and decide to sell lemonade to their neighbours. To prepare
one jar of lemonade they need a pack of 6 lemons and one litre of water that they get from their houses.
How many jars can they do given a certain number of lemon packs? Can you write a simple program to find
out the answer?

Input
The input consists of a positive integer number representing the number of lemon packs.

Output
Print the total amount of lemonade jars that can be produced.

Example 1

Input
3

Output
3 lemonade jars

Example 2

Input
1

Output
1 lemonade jar

Python3

line = int(input())

if line == 1:
 print ("{0} lemonade jar" .format(line))
else:
 print ("{0} lemonade jars" .format(line))

C++

#include <iostream>
using namespace std;

int main() {
 int jar;
 cin >> jar;
 if (jar > 1) {
 cout << jar << " lemonade jars" << endl;
 }
 else {
 cout << jar << " lemonade jar" << endl;
 }
}

8

2019

3 Where will the wedding take place?
2 points

Introduction
Ana is a wedding planner and she is planning Nuria's wedding. Ana must know how many people will attend
the wedding, so she asks the couple, Nuria and Albert, for this number. If there are fewer than 100 guests,
the wedding will take place in Monestir de Sant Cugat. If there are 100 guests or more, the wedding will
take place in a very big masia (a large country estate). Can you help Ana to decide where the wedding will
take place?
Come on, help Ana!

Input
The input consists of two integers in two lines:
<number for Nuria's guests>
<number for Albert's guests>

Output
Print out one of the following outputs stating where the wedding will take place:
The wedding will take place in Monestir de Sant Cugat.
The wedding will take place in very big masia.

Example 1

Input
50
20

Output
The wedding will take place in Monestir de Sant Cugat.

Example 2

Input
100
250

Output
The wedding will take place in very big masia.

Python3

nuria = int(input())
albert = int(input())
attendees = nuria + albert
if attendees < 100:
 print("The wedding will take place in Monestir de Sant Cugat.")
else:
 print("The wedding will take place in very big masia.")

9

2019

C++

#include <iostream>
using namespace std;

int main() {
 int nuria, albert;
 cin >> nuria >> albert;
 int attendees = nuria+albert;
 cout << "The wedding will take place in ";
 cout << ((attendees < 100)?"Monestir de Sant Cugat.":"very big masia.");
 cout << endl;
}

10

2019

4 Abel wants to play 4-9!
3 points

Introduction
Abel's parents want to buy him a new PC for his homework, and he wants to take advantage of that and get
a PC that is able to run the 4-9 game, the most popular game of the year. In order to do so, he wants to
write a little program to check if the PC specifications are enough to run the game.

The 4-9 game needs at least the following PC specifications to run properly:

- Processor generation: 5
- Graphics card memory: 2
- Free storage memory: 50

Can you help him to write this program?

Input
A sequence of 3 lines, each one with a positive integer number representing each of the PC specifications:
<Processor generation>
<Graphics card memory>
<Free storage memory>

Output
Print out one of the following outputs stating where Abel can play 4-9 or not:
You can run the game
You can NOT run the game

Example 1

Input
7
4
100

Output
You can run the game

Example 2

Input
5
1
500

Output
You can NOT run the game

11

2019

Python3

processor=int(input())
graphicscard=int(input())
freestorage=int(input())

if processor>=5 and graphicscard >=2 and freestorage >= 50:
 print ("You can run the game")

else:
 print ("You can NOT run the game")

C++

#include <iostream>
using namespace std;

int main() {
 int processor, graphic, freestorage;
 cin >> processor >> graphic >> freestorage;

 if (processor > 4 and graphic > 1 and freestorage > 49) {
 cout << "You can run the game" << endl;
 }
 Else {
 cout << "you can NOT run the game" << endl;
 }
}

12

2019

5 Rating movies
3 points

Introduction
Your friend Ana enjoys a lot going to the cinema. She wants to keep a tracking list of the movies watched
during the year and store her personal movie rating. This rating will be a number of stars, but she does not
want to write them down one by one. Instead, she asked you to write a simple program to write down as
many stars as the value of a given number between 0 and 100. In the case of rating a very bad movie with
0 stars, she asked you to display a single character dash.

Input
An integer number between 0 and 100.

Output
Print out the number of stars corresponding to the given number greater than zero. In the case the of
reading a zero then the output will be a single dash.

Example 1

Input
5

Output

Example 2

Input
0

Output
-

Python3

nstars =int(input())

s = ''
if nstars > 0:
 for i in range(nstars):
 s += '*'
else:
 s = '-'
print(s)

13

2019

C++

#include <iostream>
using namespace std;

int main() {
 int numberOfStars;
 string stringStars;
 // Read the number of stars from standard input
 cin >> numberOfStars;
 if (numberOfStars > 0) {
 for (int i = 0; i < numberOfStars; i++) {
 stringStars += "*";
 }
 }
 else {
 stringStars = "-";
 }
 cout << stringStars << endl;
}

14

2019

6 Shopping list for a party
3 points

Introduction
Three boys want to throw a party and they want to bake some cakes for their friends. They have a recipe
for a cake for 5 people. The ingredients needed for one cake are:

- 1 natural yogurt.
- 3 eggs.
- 250gr flour.
- 125gr cocoa powder.
- 250gr sugar.
- 125gr olive oil.
- 1 packet of yeast.

The number of guests will vary, depending on each person’s RSVP on social media. Once they have this
number they will need to calculate the amount of each ingredient needed to bake enough cakes for
everybody. In case the number of guests is not a multiple of 5, round it up to the nearest multiple of 5.

Can you write a program to solve this problem?

Input
The number of guests (including the 3 boys) who have confirmed their attendance.

Output
Print out the list of ingredients required for the total number of cakes needed for all the guests, in the
same order as in the recipe, specifying the amount of each ingredient.

Example 1

Input
5

Output
- 1 natural yogurt.
- 3 eggs.
- 250gr flour.
- 125gr cocoa powder.
- 250gr sugar.
- 125gr olive oil.
- 1 packet of yeast.

Example 2

Input
12

Output
- 3 natural yogurt.
- 9 eggs.
- 750gr flour.
- 375gr cocoa powder.
- 750gr sugar.
- 375gr olive oil.
- 3 packet of yeast.

15

2019

Python3

import math

people = int(input())

if ((people % 5) == 0):
 people = people//5
else:
 people = people//5 + 1

print("- {0} natural yogurt." .format(people*1))
print("- {0} eggs." .format(people*3))
print("- {0}gr flour." .format(people*250))
print("- {0}gr cocoa powder." .format(people*125))
print("- {0}gr sugar." .format(people*250))
print("- {0}gr olive oil." .format(people*125))
print("- {0} packet of yeast." .format(people*1))

C++

#include <iostream>
using namespace std;

int main() {
 int people;
 cin >> people;
 int natural=1,eggs=3, flour=250, cocoa=125, sugar=250, olive=125,pack=1;

 if (people%5 == 0)
 people /= 5;
 else
 people = people/5 + 1;

 cout << "- " << natural*people << " natural yogurt." << endl;
 cout << "- " << eggs*people<< " eggs." << endl;
 cout << "- " << flour*people<< "gr flour." << endl;
 cout << "- " << cocoa*people << "gr cocoa powder." << endl;
 cout << "- " << sugar*people<< "gr sugar." << endl;
 cout << "- " << olive*people<< "gr olive oil." << endl;
 cout << "- " << pack*people<< " packet of yeast." << endl;
}

16

2019

7 A mirror on the Moon
3 points

Introduction
The Apollo 11 mission allowed mankind to step on the Moon 50 years ago. The astronauts Neil Armstrong
and Buzz Aldrin, before the end of their moonwalk, installed a 2-foot wide panel studded with 100 mirrors
pointing at Earth. It is called the "lunar laser ranging retroreflector array".

This array of mirrors allows to 'ping' the moon with laser pulses and measure the Earth-Moon distance very
precisely. The laser pulse shoots out of a telescope on Earth, crosses the Earth-Moon divide, and hits the
array. Then the mirrors send the pulse straight back where it came from. This allows, for example, to study
the Moon's orbit. So, here is the simple formula to calculate this distance:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2

We would like to track the variability of the Earth-Moon distance so we need you to program this formula
to find out the distance in kilometers. As you may know the speed of light is a constant value that is
assumed as 300.000 kilometers / second. So, the parameter of this formula is the time taken for light to
reflect. This value will be received as input expressed in milliseconds.

 HINT: You do not need to mess with decimals to solve this formula.

Input
The time for the laser pulse to go and return expressed in milliseconds.

Output
The distance Earth-Moon expressed in kilometers.

Example

Input
2500

Output
375000

17

2019

Python3

time_in_ms = int(input())

Since the time is expressed in milliseconds and the
speed of light is expressed in km per second to avoid
messing around with big numbers and decimals the
speed of light is divided by 1000, that is, applying
a conversion factor to express the speed of light in
km per millisecond. Then we have the same units to apply
directly the formula.

speed_of_light = 300000 // 1000
distance = (speed_of_light * time_in_ms) // 2
print(distance)

C++

#include <iostream>
using namespace std;

int main() {
 int time;
 cin >> time;
 int sl = 300000/1000;
 cout << (time*sl)/2 << endl;
}

18

2019

8 The modern teacher
4 points

Introduction
0TSilvia is a modern teacher who frequently sends messages to all her students. She likes to remind them of
their homework, to congratulate them on special events and to share interesting information.

Currently, she is sending the same message to all her students, but she would like to personalize the text
for each student. She has asked her best student to build a software application that receives a template
message and a list of names and returns a personalized message for each name. Would you like to help
her?

Input
The input consists of several lines:
The first line is the template message.
The second line is the word to replace, which has a single occurrence in the template.
The third line is the number of students to customize the messages for.
The following lines contain the students’ names, one name per line.

Output
The output of the program will contain all the personalized messages, one message per line.
Each message will contain one student’s name in place of the word that was to be replaced. The messages
should appear in the same order as the names in the input.

Example 1

Input
Merry Christmas NNNN!
NNNN
4
John
Natalie
Christian
Angie

Output
Merry Christmas John!
Merry Christmas Natalie!
Merry Christmas Christian!
Merry Christmas Angie!

Example 2

Input
NAME, remember to do the homework for tomorrow.
NAME
3
Mariel
Max
Rebecca

Output
Mariel, remember to do the homework for tomorrow.
Max, remember to do the homework for tomorrow.
Rebecca, remember to do the homework for tomorrow.

19

2019

Python3

sentence = input()
word = input()
num = int(input())

for i in range(num):
 name = input()
 sentence_new = sentence.replace(word,name)
 print(sentence_new)

C++

#include <iostream>
#include <string>
using namespace std;

int main() {

 string phrase, word;
 getline(cin, phrase);
 cin >> word;
 int n;
 cin >> n;
 for (int i=0; i<n; ++i) {
 string aux = phrase;
 string name;
 cin >> name;
 int pos = aux.find(word);
 aux.replace(pos, word.size(), name);
 cout << aux << endl;
 }
}

20

2019

9 King Africa
4 points

Introduction
0TJoan is a big fan of King Africa. This Argentinian band led by Alan Duffy rose to prominence in 1999 with the
hit "La Bomba". He likes them so much that when he talks, instead of saying the words ending with r
normally, he adds an additional 'r'. This way, instead of saying 'Esta tarde va a llover', he says, 'Esta tarde
va a lloverr'. He wants to translate the e-book 'Don Quijote de la Mancha', but before he does that he wants
to practice a bit. He does not want to change all, only the words ending with 'r'; can you help him to write a
program that given a sentence, converts it to 'King Africa' style?

Input
The input consists of one single line containing the sentence to translate.

Output
Print out the translated sentence.

Example 1

Input
Vamos a bailar bailar

Output
Vamos a bailarr bailarr

Example 2

Input
El desenroscador que lo desenrosque buen desenroscador sera

Output
El desenroscadorr que lo desenrosque buen desenroscadorr sera

Python3

sentence = input()
sentence_modified = sentence.replace('r ', 'rr ') # replacing the ending r
with an double r
sentence_modified = sentence_modified.replace('R ', 'RR ') # replacing the
ending R with an double r

if sentence_modified[-1] == 'r' or sentence_modified[-1] == 'R': # in case
sentence ends with r without trailing spaces, add a double r
 sentence_modified = sentence_modified + sentence_modified[-1]

print(sentence_modified)

21

2019

C++

#include <iostream>
#include <vector>
using namespace std;

int main() {

 string word;
 vector <string> v;
 while (cin >> word) v.push_back(word);

 for (int i=0; i<v.size(); ++i) {
 if (v[i][v[i].size()-1] == 'r') v[i] += "r";
 if (v[i][v[i].size()-1] == 'R') v[i] += "R";
 }

 for (string x:v)
 cout << x << " ";
 cout << endl;

}

22

2019

10 BanBot
5 points

Introduction
You are a programmer of a game and your team has an idea to reduce the toxicity that less experienced
users suffer and promote a friendly environment. For this you must program a bot that restricts the chat
of the people using the word 'noob' in several ways, both in upper and lower case or mixed: n00b, noob,
n0ob, no0b

 HINT: Also, n00B, No0b, ... are reasons to ban! Don't let them slip!

Input
A single sentence with a chat fragment of a certain user.

Output
The bot should respond 'User is banned.' or 'User is exhibiting a friendly behaviour.' depending if they have
used the forbidden words described above.

Example 1

Input
Your style is so bad, you're a noob!

Output
User is banned.

Example 2

Input
Despite you are new, you're trying your best! Keep practicing!

Output
User is exhibiting a friendly behaviour.

Example 3

Input
Go play chess, N00B

Output
User is banned.

23

2019

Python3

List of banned words
banned_words = ['n00b', 'noob', 'n0ob', 'no0b']

Get the input
player_text = input()

Remove dots, commas, question and exclamation marks
player_text = player_text.replace(".","")
player_text = player_text.replace(",","")
player_text = player_text.replace("?","")
player_text = player_text.replace("!","")

Get a list of the words after filtering
words = player_text.lower().split()

Check if any of the words are in the list of banned words
if any(word in banned_words for word in words):
 print('User is banned.')
else:
 print('User is exhibiting a friendly behaviour.')

C++

#include <iostream>
using namespace std;

int main() {
 string words;
 bool trobat = false;
 while (cin >> words and !trobat) {
 if (words.size() == 4 or words.size() == 5) {
 if (words[0] == 'n' or words[0] == 'N') {
 if (words[1] == 'o' or words[1] == 'O' or words[1] == '0') {
 if (words[2] == 'o' or words[2] == 'O' or words[2] == '0') {
 if (words[3] == 'b' or words[3] == 'B') trobat=true;
 }
 }
 }
 }
 }
 if (trobat) cout << "User is banned." << endl;
 else cout << "User is exhibiting a friendly behaviour." << endl;
}

24

2019

11 Lottery algorithm
5 points

Introduction
As Christmas has already passed, John has seen how most of his workmates left for a new life in the
Caribbean Sea after they all won the 'Sorteo del Gordo de Navidad'. All won the prize, except for him, who
also played but he didn't have the correct algorithm and he chose the wrong number.

After having deeply read several advanced numerology books, he is quite sure that by applying this
algorithm, he will win. The algorithm consists on taking the candidate number (formed by 5 digits), dividing
it by the day of the month he was born, and if the first decimal is not 0 and the second decimal equals 0, the
number is a winner.

Input
Two integer values: the lottery number and the day of the month he was born.

Output
The output is 0 if it's not a good number, or 1 if it's the winning combination.

Example 1

Input
84367 27

Output
1

Example 2

Input
84368 27

Output
0

Python3

entrada = input()

dos_valors = entrada.split()# Splitting the entry into two string

converting the candidate and the day of month into an integers
candidate_number = int(dos_valors[0])
day_of_month = int(dos_valors[1])

divisio = candidate_number / day_of_month
no_unity = divisio - int(divisio) # removing the unities
primer_decimal = int(no_unity * 10) # finding th 1st decimal
no_first_decimal = no_unity * 10 - int(no_unity * 10)
segundo_decimal = int(no_first_decimal * 10) # finding the 2nd decimal

if (primer_decimal != 0) & (segundo_decimal == 0): # condition for the
winning number, outputting a 1
 print(1)
else:
 print(0)

25

2019

C++

#include <iostream>
using namespace std;

int main() {
 cout.setf(ios::fixed);
 cout.precision(2);
 double number, day, div;
 cin >> number >> day;

 div = number/day;
 int first, second;
 div *= 10;
 first = int(div)%10;
 div *= 10;
 second = int(div)%10;
 cout << ((first and !second)?1:0) << endl;
}

26

2019

12 Environmental footprint
6 points

Introduction
Nowadays, we can buy food that comes from anywhere in the world. But this does not come for free from
an environmental point of view. To transport the products from their origin to their final destination, it is
needed a certain amount of energy and production carbon emissions (CO2) is required. Sometimes, the
transportation of the product requires more energy than the energy that the product gives us when eating
it. The following table shows an estimate of the energy and carbon emissions per kilometers and tone for
a variety of different vehicles.

Transport Energy
(MJ/(t·km))

Carbon emissions
(g/(t·km) of CO2)

Ship 0,3 23,3

Train 0,32 23,1

Road 2,12 160,1

Plane 21,01 1577,1

Given the energy by eating the product (MJ/t) and the transportion vehicle, calculate the maximum amount
of kilometers that can be reached so that the energy required for the transportation does not exceed the
energy produced by the product. Then, find out the associated carbon emissions produced by the
transportation. For both values provide just 1 decimal of precision.

Input
The input is a sequence of lines, where each line contains a mean of transportation and the energy produced
by the food in MJ/t. The sequence ends with the character #.

Output
The output is a triplet for each line of the input. Each triplet consists of:

- The mean of the transportation.
- The maximum number of km that can travelled while the energy required does not exceed the

energy produced by the food.
- The CO2 emissions produced by the transportation for the maximum number of km.

Example

Input
Ship 10650
Plane 10650

Output
Ship 35500.0 827150.0
Plane 506.9 799434.3

27

2019

Python3

Store in a dictionray the table < transport: energy/tone*km and carbon
emissions/tone*km >
transport = {'Ship':[0.3,23.3], 'Train':[0.32,23.1], 'Road':[2.12,160.1],
'Plane':[21.01,1577.1]}

Read the data input
data = input()

Until the character # is read perform this loop
while data != "#":

 # Collect the data entered and split them into two fields: vehicle and
energy of the product
 vehicle, energy = data.split(" ")

 # Find out the max kilometers that can be transported
 maxKm = float(energy) / transport[vehicle][0]

 # Calculate the carbon emissions produced by the transportation
 carbonEmissions = maxKm * transport[vehicle][1]

 # Print the result
 print(vehicle, "{0:.1f}".format(maxKm), "{0:.1f}".format(carbonEmissions)
)

 # Process the next line
 data = input()

28

2019

C++

#include <iostream>
#include <map>
using namespace std;

#define mp make_pair

int main() {
 cout.setf(ios::fixed);
 cout.precision(1);
 string transport;
 map<string,pair<float,float> > tr;
 tr.insert(mp("Ship", mp(0.3, 23.3)));
 tr.insert(mp("Train", mp(0.32, 23.1)));
 tr.insert(mp("Road", mp(2.12, 160.1)));
 tr.insert(mp("Plane", mp(21.01, 1577.1)));

 while (cin >> transport and transport != "#") {
 float energy;
 cin >> energy;
 float km, coxkm;
 km = energy/tr[transport].first;
 coxkm = (energy/tr[transport].first)*tr[transport].second;
 cout << transport << ' ' << km << ' ' << coxkm << endl;
 }
}

29

2019

13 Double checking Internet facts
6 points

Introduction
You are attending your daily English class at the Upside-Down school, and your teacher tells you and your
classmates about letter frequency. She says the letters E, T, A, O and I are the most used in the English
language. Since you're a curious guy, you raise your hand and ask the teacher where she learned about this,
and she mentions that she read an article on Wikipedia. You know that Wikipedia has a lot of information,
but since everyone can edit it, you do not always trust everything it says. To make sure that the information
is right, you decide to create a program to verify the letter frequcency in different texts.

Input
The input is a text in English.

Output
Print each letter of the Upside-Down English Alphabet with their corresponding number of appearances.

Example

Input
In a 2017 German study, researchers at Ruhr-University Bochum compared the ability of
gamers and non-gamers to remember information from cue cards and then combine that
information to predict weather conditions. The video gamers showed greater retention of
the cue card knowledge and made better predictions, especially in conditions of
uncertainty.

Output
z = 0
y = 5
x = 0
w = 3
v = 2
u = 7
t = 26
s = 13
r = 26
q = 0
p = 4
o = 23
n = 25
m = 13
l = 4
k = 1
j = 0
i = 22
h = 10
g = 6
f = 6
e = 37
d = 15
c = 14
b = 5
a = 22

30

2019

python3

text = input()

text = text.lower()
listletters = "abcdefghijklmnopqrstuvwxyz"
listletters = listletters[::-1]

for x in listletters:
 count = 0
 for y in text:
 if x == y:
 count += 1
 print(x,"=",count)

C++

#include <iostream>
#include <map>
using namespace std;

int main() {
 map<char,int> m = {{'a',0},{'b',0},{'c',0},{'d',0},{'e',0},{'f',0},{'g',0},
 {'h',0},{'i',0},{'j',0},{'k',0},{'l',0},{'m',0},{'n',0},
 {'o',0},{'p',0},{'q',0},{'r',0},{'s',0},{'t',0},{'u',0},
 {'v',0},{'w',0},{'x',0},{'y',0},{'z',0}};

 char lletra;
 while (cin >> lletra) {
 if (isupper(lletra)) lletra=tolower(lletra);
 if (m.find(lletra) != m.end())
 ++m[lletra];
 }
 for (auto it = m.rbegin(); it != m.rend(); ++it) {

 cout << it->first << " = " << it->second << endl;
 }
}

31

2019

14 Zombie attack
7 points

Introduction
The scientists of your city are preparing for an imminent zombie outbreak. They have asked you to write a
program that simulates the evolution of a zombie apocalypse in a city, assuming a zombie enters the city
at noon. Researchers has shown that:

- Every night each zombie infects 2 healthy inhabitants of the city
- 25% of the zombies (rounded up) die when the sun rises
- An infected inhabitant becomes a zombie when the sun sets

Your job is to create a zombie simulator which, given the city’s population, calculates how many days will
pass until the city is completely infected.

Input
The initial population before the first zombie arrives.

Output
Print out the number of days required by the zombies to infect the entire population.

Example

Input
600

Output
7 days

Python3

import math

population = int(input())
zombies = 1
day = 0
while population > 0:
 day += 1
 new_zombies = min(population, 2 * zombies)
 new_dead = math.ceil(0.25 * zombies)
 population -= new_zombies
 zombies += new_zombies - new_dead

print(day, "days")

32

2019

C++

#include <iostream>
using namespace std;

int main() {
 int pop;
 cin >> pop;
 int days = 0;
 int zombie = 1;
 while (pop > 0) {
 int infected = min(pop,zombie*2);
 int dead = ceil(zombie*0.25);
 pop -= infected;
 zombie += infected - dead;
 ++days;
 }
 cout << days << " days" << endl;
}

33

2019

15 Save the CodeWars
8 points

Introduction
A hacker has infiltrated our Judge code! He has introduced a virus into our system that threatens the
competition. It has kidnaped the server! We need you, our most talented young programmers, to deactivate
the virus in order to save the event and our amazing prizes!

Our smart HP CodeWars volunteers’ team has discovered that to deactivate the virus we need to enter a 4
numbers combination related to the Fibonacci numbers.

The Fibonacci numbers are the sequence of numbers defined by the linear recurrence equation:

𝐹𝐹𝑛𝑛 = 𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝑛𝑛−2

where 𝐹𝐹1 = 1 and 𝐹𝐹2 = 1.

Therefore, the Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, ...

We need your help to write a program that computes the 4 Fibonacci numbers that the virus is asking for.

Input
The input of the program is one line with 4 numbers, greater than 0, and separated by white spaces. Each
one of these numbers marks a position of an element in the Fibonacci sequence (for example, 1 marks the
first element, 𝐹𝐹1.

Output
The output of the program must be the 4 Fibonacci numbers (𝐹𝐹𝑥𝑥) in the given positions, separated by white
spaces.

Example

Input
10 2 12 5

Output

55 1 144 5

Python3

34

2019

Read the input with the four numbers to request Fibonacci(n). The numbers
are separated by space.
data = input()

Auxiliar recursive function to calculate the fibonacci number n
def fibonacci(n):

 # Default values for Fib(0), Fib(1) and Fib(2)
 fib = [0,1,1]

 if (n > 0 and n <= 2):
 return fib[1]
 elif (n == 0):
 return fib[0]
 else:
 for i in range(3,n+1):
 # Add a new element to the Fibonacci table
 fib.append(0)
 # Calculate this value
 fib[i] += fib[i-1] + fib[i-2]
 return fib[n]

Split the data into a list of strings
numbers = data.split(" ")

Convert the list of strings in a list of numbers
numbers = list(map(int, numbers))

Apply the fibonacci function to the four numbers and print the output
print(str(fibonacci(numbers[0])) + " " +str(fibonacci(numbers[1]))+ " "
+str(fibonacci(numbers[2]))+ " " +str(fibonacci(numbers[3])))

35

2019

C++

#include <iostream>
using namespace std;

int fib(int n) {
 if (n == 0 or n == 1) return n;
 int f1,f2,f;
 f1 = 1; f2 = 0;
 for (int i=2; i<=n; ++i) {
 f = f1 + f2;
 f2 = f1;
 f1 = f;
 }
 return f;
}

int main() {
 for (int i=0; i<4; ++i) {
 int n;
 cin >> n;
 cout << ((i)?" ":"") << fib(n);
 if (i==3) cout << endl;
 }
}

36

2019

16 Life on Mars
9 points

Introduction
The first human expedition on Mars has identified a new strand of microorganisms. The new life is based
on a single stranded RNA-like code but uses only 3 different nucleotides or “letters” to encode its genetic
information: A (Adenine), T (Thymine) and U (Uracil). The biology of the cell is based on simple proteins
formed by a short series of amino acids encoded by pairs of the genetic code letters (codons). For instance:
the sequence AT gives the amino acid Cysteine; the sequence TU encodes for Arginine (see table). There are
especial codons for starting a coding sequence (AU) and for the end of a sequence (TA) and (TT). Note that
the especial sequence UT makes the cell discard (delete) the last amino acid coded and there is no multiple
START signal on a given sequence.

Write a program that given a string containing a nucleotide sequence, returns the (comma separated)
sequence of amino acids (if any) encoded in the sequence or “None” if no valid sequence is found. To be
valid, a sequence must have a single START, at least one amino acid and an END signal.

Input
The input is a string with a nucleotide sequence using single capital letters.

Output
Print out the sequence of amino acid names (fist letter of the amino acid name in capital letter), separated
by a comma.

Example 1

Input
AUAATUTT

Output
Glycine,Arginine

Example 2

Input
AUAATUUTUUATTT

Output
Glycine,Lysine,Cysteine

Example 3

Input
AUAATUUTUUAT

Output
None

Python3

37

2019

import sys
"""
ribosome This is the method that converts a RNA sequence into a series of aminoacid that form a
protein.
 This function is implementing a state machine able to read alien genomic sequeces.
The ARN to aminoacid translation table is defined in the variable ARN.
Valid sequences are found between a single START and the first END thereafter
 Here the kids have to implement a state machine. The implementation can be short (less than 40
lines) but tricky.
While we have not yet found a START sequence, we have to parse letters one by one. After we find
the first START,
we parse letters in pairs till we find the first END
 :param sequence: String with the ARN string with letters A,T or U
:returns: string with all the aminoacids sepparated with comma or the string "None" of no valid
sequence found.
"""
def ribosome(sequence):
 ARN = {'AA': 'Glycine', 'AT': 'Cysteine', 'AU': 'START', 'TA': 'END','TT': 'END','TU':
'Arginine','UA': 'Serine','UT': 'DELETE','UU' : 'Lysine'}
 aminoList = []
 seq = sequence
 coding = False # True when we are in a coding area (found START but not yet END)
 exit = False
 while not exit:
 if len(seq) < 2:
 break
 codon = seq[:2]
 signal = ARN[codon]
 if signal == 'START':
 coding = True
 seq = seq[2:] # found START, skip 2 letters
 elif signal == 'END':
 if coding:
 exit = True # No need to keep looking for more sequences
 else:
 seq = seq[1:] # found end but, we had not yet found a start, so keep searching
skipping just 1 letter
 coding = False
 else:
 if coding:
 if signal != 'DELETE':
 aminoList.append(signal)
 else:
 aminoList.pop()
 seq = seq[2:]
 else:
 seq = seq[1:]
 if len(aminoList) == 0 or not exit: #
 return 'None'
 else:
 return ','.join(aminoList)

################
Main program #
################

sequence = input()
aminoList = ribosome(sequence)
print(aminoList)

38

2019

39

2019

C++

#include <iostream>
#include <vector>
using namespace std;
int main() {
 bool start = false;
 string rna;
 cin >> rna;
 vector<string> v;
 int i = 0;
 while (i < rna.size()-1) {
 if (!start) {
 if (rna[i] == 'A' and rna[i+1] == 'U') {
 i += 2;
 start = true;
 }
 else ++i;
 }
 else {
 if (rna[i] == 'A') {
 if (rna[i+1] == 'A') v.push_back("Glycine");
 else if (rna[i+1] == 'T') v.push_back("Cysteine");
 else continue;
 }
 else if (rna[i] == 'T') {
 if (rna[i+1] == 'U') v.push_back("Arginine");
 else start = false;
 }
 else {
 if (rna[i+1] == 'A') v.push_back("Serine");
 else if (rna[i+1] == 'T') v.pop_back();
 else v.push_back("Lysine");
 }
 i += 2;
 }
 }

 if (!v.size() or start) cout << "None" << endl;
 else {
 for (int i=0; i<v.size(); ++i) {
 if (i > 0) cout << ',';
 cout << v[i];
 }
 cout << endl;
 }
}

40

2019

17 Sator Arepo
9 points

Introduction
The five words SATOR, AREPO, T ENET, OPERA, and ROTAS form a known lettered magic square.

When it is read horizontally (backwards and forwards) and vertically (up and down) it always forms the
same palindrome:

S A T O R A R E P O T E N E T O P E R A R O T A S

It was written in Latin and was found for the first time signed up in the ruins of Pompeii on a column from
the 1st century AD. Since its discovery, it was found in many ancient tombs and temples. Some people have
attributed magical properties to it, considering it one of the broadest magical formulas in the West.

We would like to have a program to detect lettered magic squares like Sator Arepo. Can you help us?

Input
The input consists of five words of five characters in different lines

Output
A string describing the input as "Magic Square like Sator Arepo" or "Not a Magic Square"

Example 1

Input
SATOR
AREPO
TENET
OPERA
ROTAS

Output
Magic Square like Sator Arepo

Example 2

Input
HELLO
PATER
SILLY
JIMMY
BUZZY

Output
Not a Magic Square

41

2019

Python3

Lines
lines = ["","","","",""]

Columns
columns = ["","","","",""]

lines[0] = input()
lines[1] = input()
lines[2] = input()
lines[3] = input()
lines[4] = input()

Fill the content of each column from lines
for i in range(5):
 columns[i] = lines[0][i] + lines[1][i] + lines[2][i] + lines[3][i] +
lines[4][i]

Check that lines and columns are palindromes
if (lines[0] == lines[4][::-1] and lines[1] == lines[3][::-1] and lines[2] ==
lines[2][::1] and \
 columns[0] == columns[4][::-1] and columns[1] == columns[3][::-1] and
columns[2] == columns[2][::-1] and \
 lines[0] == columns[0] and lines[1] == columns[1] and lines[2] ==
columns[2] and lines[3] == columns[3] and lines[4] == columns[4]):
 print("Magic Square like Sator Arepo")
else:
 print("Not a Magic Square")

42

2019

C++

#include <iostream>
#include <vector>
using namespace std;

int main() {
 vector<string> v(5);
 for (int i = 0; i < 5; ++i) {
 cin >> v[i];
 }
 bool trobat = false;

 for (int k= 0; k < 5 and !trobat; ++k) {
 for (int i = k, j = k; i < 5 and !trobat; ++i, ++j) {
 if (v[i][k] != v[k][j]) trobat = true;
 }
 }
 for (int i = 0, x = 4; i < 5 and !trobat; ++i, --x) {
 for (int j = 0, z = 4; j < 5 and !trobat; ++j, --z) {
 if (v[i][j] != v[x][z]) trobat = true;
 }
 }
 if (!trobat) cout << "Magic Square like Sator Arepo" << endl;
 else cout << "Not a Magic Square" << endl;
}

43

2019

18 The Arrangers
9 points

Introduction
The time has come. After more than ten years and twenty films building up to the final climax, "The
Arrangers" is premiering in cinemas today. It's full of action, emotion and bad jokes. It’s going to be HUGE.

At least as huge as the queue.

You are the first of your friends to arrive and there is no more room inside, so you must buy all the tickets.
You can only buy one ticket at a time, so if you need more than one, you have to go back to the end of the
line until you have as many as you need.

Each ticket takes exactly one minute to buy. You need to calculate how many minutes you will spend in the
queue, so you can tell your friends when to arrive.

Input
The input consists of two lines where:
The first line is a series of positive integers indicating the number of tickets that each person wants to buy.
The second line is your initial position in the queue, starting from "1".

Output
Print out a single integer indicating how many minutes you will be in the queue until you buy all the tickets.

Example 1

Input

2 2 4 1 3
3

Output
12

Example 2

Input

5 1 3 2
2

Output
2

44

2019

Python3

ll = input()
llista = ll.split(' ')
llista = list(map(int, llista))
pos = int(input())

time = 0
pos -= 1

while True:
 if not llista[pos]:
 break
 for i in range(len(llista)):
 if not llista[pos]:
 break
 if llista[i]:
 time += 1
 llista[i] -= 1

print(time)

45

2019

C++

#include <iostream>
#include <sstream>
#include <queue>
#include <stdint.h>

int main()
{
 uint32_t buyTime = 0;

 // Read the tickets each person wants to buy
 std::string ticketsString;
 std::getline(std::cin, ticketsString);
 std::istringstream iss(ticketsString);

 std::queue<uint32_t> ticketsQueue;
 uint32_t ticket = 0;
 while (iss >> ticket)
 {
 ticketsQueue.push(ticket);
 }

 // Get our position
 uint32_t myPosition = 0;
 std::cin >> myPosition;
 if ((myPosition <= 0) || (myPosition > ticketsQueue.size()))
 {
 std::cout << "Error" << std::endl;
 return -1;
 }

 // Check how many time we will spend in the queue to buy all the tickets
 while (true)
 {
 // One more minute spent in the queue
 buyTime++;

 // Adavance the turn
 uint32_t nextTickets = ticketsQueue.front();
 ticketsQueue.pop();
 nextTickets--;
 myPosition--;

 // Check if we are finished
 if ((nextTickets == 0) && (myPosition == 0))
 {
 break;
 }

46

2019

 // Go back to the waiting line
 if (nextTickets > 0)
 {
 ticketsQueue.push(nextTickets);
 }

 // Update our position if we just bought a ticket
 if (myPosition == 0)
 {
 myPosition = ticketsQueue.size();
 }
 }

 // Print out the time we will spend
 std::cout << buyTime << std::endl;
 return 0;
}

47

2019

19 Pattern recognition
12 points

Introduction
Pattern recognition is a popular branch of Artificial Intelligence and is defined as the process of classifying
input data into objects or classes based on key features. It has applications in computer vision like face
detection and stop sign detection in autonomous car driving.

In its basic form a pattern recognition system consists of three stages:

1. A set of sensors gather the observations to be classified or described.
2. A feature extraction mechanism computes numeric or symbolic information from the observations.
3. A classification or description scheme classifies the observations relying on the extracted features

in the previous stage.

Here is a proposal to do the first steps in pattern recognition. Can you develop a program to just classify
the input received as a series of lines received as one of these polygons: square, rectangle or triangle?

Input
The input will be a series of lines with any ASCII characters drawing a polygon form, that can only be a
square, a rectangle or a triangle.

Output
Print out the sentence “I see a X” where X will be the polygon recognized, that is square, rectangle or
triangle.

Example 1

Input

Output
I see a square

Example 2

Input

* *

Output
I see a rectangle

Example 3

Input

Output
I see a square

Example 4

Input
$
$$
$ $
$ $
$$$$$

Output
I see a triangle

48

2019

Python3

import sys

rows = 0
columns = 0
prevColumns = 0
triangleFound = False

for i in sys.stdin:
 prevColumns = columns
 i=i.lstrip() # Remove whitespaces from left
 i=i.rstrip() # Remove whitespaces from right
 # Discard any empty line
 if i !="":
 columns = len(i) # Get the number of columns from current row
 if (prevColumns != columns and rows != 0):
 triangleFound = True
 rows += 1

if (triangleFound):
 print("I see a triangle")
elif (rows == columns):
 print("I see a square")
else:
 print("I see a rectangle")

49

2019

C++

#include <iostream>
#include <vector>
using namespace std;

int main() {
 string pattern;
 int rows, prevC, col;
 rows = prevC = col = 0;
 bool triangle = false;
 while (getline(cin,pattern)) {
 prevC = col;
 int size1a = pattern.find_first_not_of(' ');
 int size1b = pattern.find_first_not_of('\t');

 pattern.erase(0,size1a);
 pattern.erase(0,size1b);
 if (pattern != "") {
 col = pattern.size();
 if (prevC != col and rows != 0)
 triangle = true;
 ++rows;
 }
 }
 if (triangle) cout << "I see a triangle" << endl;
 else if (rows == col) cout << "I see a square" << endl;
 else cout << "I see a rectangle" << endl;
}

50

2019

20 Droid maker
13 points

Introduction
In 1999 the movie Star Wars: Episode I The Phantom Menace premiered worldwide. This prequel movie
explained the life of a young Anakin Skywalker, also known as the evil Darth Vader. One of his hobbies was
to construct his own droids, like C-3PO. We challenge you to follow in the footsteps of Anakin. Well, we are
not asking you to rule the galaxy, just to share the same hobby building and programming little robots. But
since you are in galaxy far, far away, you cannot program the droids using binary numeral systems (based
in two digits: 0 and 1) because this galaxy uses ternary numeral systems.

A ternary numeral system has three as its base with three digits: 0, 1 and 2. So, instead of speaking of bits
(binary digits) you will manage trits (trinary digits). Below an example:

Decimal Binary Ternary
0 0 0
1 1 1
2 10 2
3 11 10
4 100 11
5 101 12
6 110 20
7 111 21
8 1000 22
9 1001 100

10 1010 101
11 1011 102
12 1100 110
... … …

Consider the decimal number 42, as an example, its representation in binary is 101010. Meaning that the
position of 25 is 1, 24 is 0, 23 is 1, 22 is 0, 21 is 1 and 20 is 0.

Accordingly, 42 in ternary the positions are represented as 33 is 1, 32 is 1, 31 is 2 and 33 is 0.

So, you will need to find a way to convert all your decimal data into ternary data. Can you write a program
to have your data expressed in trits?

Input
An integer positive decimal number

Output
The corresponding value of the input number translated to ternary numeral system.

51

2019

Example 1

Input
10

Output
101

Example 2

Input
1977

Output
2201020

Python3

import sys

num = int(input())

def convertToTrits(n):
 a = n // 3
 b = n % 3
 if (a == 0):
 return str(b)
 else:
 return(convertToTrits(a) + str(b))

res = convertToTrits(num)

print(res)

C++

#include <iostream>
using namespace std;

string convertToTri(int n) {
 int a = n/3;
 int b = n%3;
 if (!a) return to_string(b);
 else {
 return (convertToTri(a) + to_string(b));
 }
}

int main() {
 int n;
 cin >> n;
 cout << convertToTri(n) << endl;
}

52

2019

21 Happy new year 2019!
13 points

Introduction
Although today we are already March 2nd we are still celebrating that 2019 is happy year. Probably you will
ask yourself why? The answer is simple 2019: is a happy number.

A happy number is a number that, if you square its digits, add them together, and then take the result and
square its digits and add them together, and keep repeating that over and over, your end result is the
number 1.

If there are happy numbers, then there must be unhappy numbers. Those numbers for which this process
does not end in 1 are considered unhappy numbers.

Input
An integer number greater than zero.

Output
Print out a string with the input number stating whether the number is happy or unhappy.

Example 1

Input
2

Output
2 is an unhappy number!

Example 2

Input
2019

Output
2019 is a happy number!

53

2019

Python3

num = input()

Make a copy of the original number entered
originalNumber = num

Use a set to store all the number that are processed
past = set()

Iterate searching for number 1 until a cycle is detected
while (int(num) != 1):
 # Find out the number resulting of applying the sum of all the digits
squared
 res = 0
 for i in num:
 res = res + pow(int(i),2)
 num = str(res)

 # Check whether this number has been already processed and we are cycling
 # Then break the search and report the number as unhappy
 if num in past:
 break
 # Add the resulting number to the set of past numbers visited
 past.add(num)

if(int(num) == 1):
 print(originalNumber + " is a happy number!")
else:
 print(originalNumber + " is an unhappy number!")

54

2019

C++

#include <iostream>
using namespace std;

int suma(int n) {
 int suma=0;
 while (n != 0) {
 suma=suma+(n%10)*(n%10);
 n/=10;
 }
 return suma;
}
bool is_happy(int n) {
 if (suma(n)==1) return true;
 else if (suma(n)==4)return false;
 else return is_happy(suma(n));
}
int main() {
 int n;
 cin >> n;
 if (is_happy(n)) {
 cout << n << " is a happy number!" << endl;
 }
 else {
 cout << n << " is an unhappy number!" << endl;
 }
}

55

2019

22 Vigenère
13 points

Introduction
A 16th century French diplomat, Blaise de Vigenère, created a very simple cipher that is moderately difficult
to decipher. It is an improvement on the Caesar cipher to reduce the effectiveness of performing frequency
analysis on the ciphered text.

The Vigenère cipher uses a 26×26 table with A to Z as the row and column headings. This is known as the
Vigenère table. The first row of this table contains the 26 letters in the English alphabet in order. Starting
with the second row, each contains the letters in the same order shifted one position to the left one
compared to the previous row in a cyclical manner. For example, when B is shifted to the first position on
the second row, the letter A moves to the end of the row.

Given this poly-alphabetical table the cipher uses a keyword for shifting the alphabet used to encode each
character of the message. The first letter of the keyword indexes the row and the first letter of the message
indexes the column (for which it serves as the heading). Then the second letter of the keyword is used for
the second letter of the message. Once all the letters of the keyword have been used we go back to the
beginning of the keyword.

Example: Given the message to cipher “MAYTHECODEBEWITHYOU” with the keyword “LUCAS” the message
ciphered is “XUATZPWQDWMYYILSSQU”.

The deciphering process consists of

1. picking a letter in the coded message (M) and its corresponding letter in the keyword(K)
2. using the letter in the keyword (K) to determine the row
3. searching that row for the column which contains the message letter (M); and finally
4. identifying the letter at the head of that column which is the letter found in the original message.

56

2019

Input
The input is split in three lines in capital letters.
The first line contains a single character: C for cipher or D for decipher.
The second line contains the message to encrypt or decrypt.
The third line contains the keyword.

Output
Print out the encoded (encrypted) message if the first line contains a C; the decoded message if the first
line contains a D.

Example 1

Input
C
ILIKETOCRYPTMYMESSAGES
HPCODEWARS

Output
PAKYHXKCIQWIOMPIOSRYLH

Example 2

Input
D
PIUTXRJYKGYTCRDGEPYWYTFAHWOAXW
HPCODEWARS

Output
ITSFUNNYTOREADACIPHEREDMESSAGE

57

2019

Python3

import string

option = input()
message = input()
key = input()

message = message.upper()
key = key.upper()

lengthMessage = len(message)
lengthKey = len(key)

Create Vignere table
listAlfabet =
['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X',
'Y','Z']
lengthAlfabet = len(listAlfabet)

vigenereTable = []
for i in range(lengthAlfabet):
 vigenereTable = vigenereTable + [listAlfabet]
 listAlfabet = listAlfabet[1:] + list(listAlfabet[0])

if (option == "C"):
 for i in range(lengthMessage):
 j = key[i%lengthKey]
 print(vigenereTable[string.ascii_uppercase.index(j)][string.ascii_uppercase.index(message[i])],
end="")

if (option == "D"):
 for i in range(lengthMessage):
 j = key[i%lengthKey]
 pos = vigenereTable[string.ascii_uppercase.index(j)].index(message[i])
 print(listAlfabet[pos], end="")

print()

58

2019

C++

#include <iostream>
#include <vector>
using namespace std;

int main() {
 char opt;
 string message;
 string key;
 cin >> opt >> message >> key;
 vector<char> v = {'A','B','C','D','E','F','G','H','I','J','K','L','M',
 'N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};
 if (opt == 'C') {
 for (int i=0; i<message.size(); ++i) {
 int j = int(key[i%key.size()])%65;
 int p = int(message[i])%65;
 int pos = (p+j)%26;
 cout << v[pos];
 }
 cout << endl;
 }
 else {
 for (int i=0; i<message.size(); ++i) {
 int j = int(key[i%key.size()])%65;
 int p = int(message[i])%65;
 int pos = p-j;
 if (pos < 0) pos += 26;
 cout << v[pos];
 }
 cout << endl;
 }
}

59

2019

23 X marks the spot
13 points

Introduction

Archaeology is the search for fact. Not truth. If it's truth you're interested in, Dr.Tyree's philosophy
class is right down the hall… So, forget any ideas you've got about lost cities, exotic travel, and
digging up the world. We do not follow maps to buried treasure, and "X" never, ever marks the spot.

Henry Jones Jr.
Indiana Jones and The Last Crusade (1989)

As you may know, Indiana Jones’ speech to his students was not completely accurate. A short while later
he discovered in an Italian library that sometimes, indeed, “X” marks the spot. This is how he uncovered the
tomb of a First Crusade knight while looking for the Holy Grail.

In the digital world you should practice the drawing of an “X” of different sizes in case someday you will
want to hide a digital treasure under it. You can do it using only the characters “X”, “\”, and “/”.

Input
The input will be a single positive integer indicating the height of the “X”.

Output
Print out the X following the pattern show in the examples.

Example 1

Input
1

Output
X

Example 2

Input
2

Output
\/
/\

Example 3

Input
3

Output
\ /
 X
/ \

Example 4

Input
4

Output
\ /
 \/
 /\
/ \

60

2019

Python3

rows_cols = int(input())

if rows_cols == 1:
 print("X")
elif (rows_cols % 2) == 0:
 for i in range(rows_cols//2):
 print(" " * i + "\\" + " " * 2*(rows_cols//2-(i+1)) + "/")
 for i in range(rows_cols//2):
 print(" " * (rows_cols//2-(i+1)) + "/" + " " * 2*i + "\\")
elif (rows_cols % 2) == 1:
 for i in range(rows_cols//2):
 print(" " * i + "\\" + " " * (2*(rows_cols//2-(i+1))+1) + "/")
 print(" " * ((rows_cols//2)) + "X")
 for i in range(rows_cols//2):
 print(" " * (rows_cols//2-(i+1)) + "/" + " " * ((2*i)+1) + "\\")

C++

#include <iostream>
using namespace std;

int main() {
 int n;
 cin >> n;
 if (n == 1) cout << 'X' << endl;
 else if (n%2 == 0) {
 for (int i=0; i<n/2; ++i)
 cout << string(i,' ') << "\\" << string(2*(n/2-(i+1)),' ') << '/' << endl;
 for (int i=n/2-1; i>=0; --i)
 cout << string(i,' ') << "/" << string(2*(n/2-(i+1)),' ') << '\\' << endl;
 } else {
 for (int i=0; i<n/2; ++i)
 cout << string(i,' ') << "\\" << string(2*(n/2-(i+1))+1,' ') << '/' << endl;
 cout << string(n/2,' ') << 'X' << endl;
 for (int i=n/2-1; i>=0; --i)
 cout << string(i,' ') << "/" << string(2*(n/2-(i+1))+1,' ') << '\\' << endl;
 }
}

61

2019

24 Smart spreadsheet
14 points

Introduction
Spreadsheets are a basic tool used in many jobs from all around the world. These computer applications
are heavily used for organization, analysis and storage of data in tabular form. Since we consider it a market
segment that has still room for innovation and improvement, at HP we have started the development of
our own spreadsheet app and expect it to be released later this year.

However, creating the most awesome printers ever leaves us with too little time to create our own
spreadsheet. Particularly, we are stuck with the integration of variables to perform computations. What we
want is to be able to store partial results into variables that can be used later in another operation.

More specifically, we want our product to support the basic operators "+", "-", "*" and "/". Moreover, all the
operations run by the app will be issued using any of the following formats:

- variable = number op number
- variable = $variable op number
- variable = number op $variable
- variable = $variable op $variable

Where "variable" stands for the name of a variable, "number" for any integer value (including the negative
ones) and "op" for any of the aforementioned valid operators. Notice that when we use a variable as an
operand, it is preceded by a "$" symbol.

Please, can you help us with this?

Input
The program must read a variable number of lines, each one following any of the previous formats. The
program ends when an "end" tag is read.

Output
For each input line representing an operation, the program must print its outcome (the value that is
assigned to the variable).

62

2019

Example 1

Input
a = 4 + 3
b = 10 + $a
end

Output
7
17

Example 2

Input
hewlett = 27 - 7
packard = $hewlett / 5
hewlett = $packard * $packard
CodeWars = $hewlett + 1971
Palo = $CodeWars - 2018
Alto = -15 - $Palo
end

Output
20
4
16
1987
-31
16

Python3

line = input()
var = dict()

def computeValue(vari):
 if '$' in vari:
 vari = vari.replace('$','')
 return int(var[vari])
 else:
 return int(vari)

def operation(n, m, c):
 if c == '+':
 return n+m
 elif c == '-':
 return n-m
 elif c == '*':
 return n*m
 else:
 return n//m

while line != 'end':
 lines = line.split(" ")
 num1 = computeValue(lines[2])
 num2 = computeValue(lines[4])
 op = lines[3]
 var[lines[0]] = operation(num1, num2, op)
 print(var[lines[0]])
 line = input()

63

2019

C++

#include <iostream>
#include <stdint.h>
#include <stdlib.h>
#include <string>
#include <map>

std::map<std::string, int32_t> variables;

int32_t computeValue(std::string op)
{
 if (op[0] == '$')
 {
 op.erase(0,1);
 return variables[op];
 }
 else
 {
 return atoi(op.c_str());
 }
}

int main()
{
 std::string dest;

 // Iterate over all the operations requested
 while (std::cin >> dest && dest.compare("end"))
 {
 // Read the operands and the action to perform
 std::string op1, op2, action;
 std::cin >> op1 >> op1 >> action >> op2;

 int32_t op1Value = computeValue(op1);
 int32_t op2Value = computeValue(op2);
 int32_t result;
 if (action == "+")
 {
 result = op1Value + op2Value;
 }
 else if (action == "-")
 {
 result = op1Value - op2Value;
 }
 else if (action == "*")
 {
 result = op1Value * op2Value;
 }
 else if (action == "/")
 {
 result = op1Value / op2Value;
 }

 std::cout << result << std::endl;
 variables[dest] = result;
 }
}

64

2019

 25 Juno's calculator
15 points

Introduction
The roman goddess Juno is the protector and special counselor of the state. She needs to manage the state
accounting, but she is very busy, and she asks you to help her.

Could you write a program that quickly calculates mathematical operations? There are no parentheses,
priorities or operator associativity, the operations must be done in the order they are read. Remember that
Juno only knows Roman Numerals, so you will have to do some translating!

Input
An undetermined amount of pairs of lines. The first line from each pair is a Roman Number, the second
one is a mathematical operation ("+", "-", "*", "/", "%", ”=”). Note that:

- “/” is the integer division operator
- "%" is the modulo operator that finds the remainder after division of one number by another
- “=” is only allowed once at the end of the input

Output
The result of the series of operations in the order they are read. The output must be written in roman
numbers. The result will be always greater than 0 and less than 4000

Example 1

Input
I
+
II
+
IV
+
VI
=

Output
XIII

Example 2

Input
I
+
II
+
IV
+
VI
*
II
=

Output
XXVI

Example 3

Input
I
+
II
+
IV
+
VI
-
XII
=

Output
I

Example 4

Input
I
+
II
+
IV
+
VI
/
II
=

Output
VI

Example 5

Input
I
+
II
+
IV
+
VI
%
X
=

Output
III

65

2019

Python3

roman = {'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000}

def roman2dec(rom):
 aux = 0
 for i in range(len(rom)):
 n = roman[rom[i]]
 if i+1 < len(rom) and roman[rom[i+1]] > n:
 aux -= n
 else:
 aux += n
 return aux

def operate(r, opt, num):
 if opt == '+':
 r += num
 elif opt == '-':
 r -= num
 elif opt == '*':
 r *= num
 elif opt == '%':
 r %= num
 else:
 r //= num
 return r

def dec2roman(val):
 rv = [1,4,5,9,10,40,50,90,100,400,500,900,1000]
 rl = ['I','IV','V','IX','X','XL','L','XC','C','CD','D','CM','M']
 romanL = ""
 for i in range(12,-1,-1):
 while val >= rv[i]:
 val -= rv[i]
 romanL += rl[i]
 return romanL

rom = input()
op = input()

res = roman2dec(rom)
while op != '=':
 rom = input()
 res = operate(res,op,roman2dec(rom))
 op = input()

print(dec2roman(res))

66

2019

C++

#include <iostream>
#include <string>
#include <map>
using namespace std;

map<char, int> rtd = {{'I', 1}, {'V', 5}, {'X', 10}, {'L', 50}, {'C', 100}, {'D', 500}, {'M',
1000}};

unsigned int romanToDecimal(string roman)
{
 int dec = 0;
 for (int i = 0; i < roman.length(); i++)
 {
 int digit = rtd[roman[i]];
 //If the next letter is bigger, the current one substarcts
 if (i+1 < roman.length() && rtd[roman[i+1]] > digit)
 dec -= digit;
 else //Otherwise it sums
 dec += digit;
 }
 return dec;
}

string decimalToRoman(int decimal)
{
 int thresholds[13] = {1,4,5,9,10,40,50,90,100,400,500,900,1000};
 string letters[13] = {"I","IV","V","IX","X","XL","L","XC","C","CD","D","CM","M"};
 string roman = "";
 for (int i = 12; i >= 0; i--) {
 while(decimal >= thresholds[i]){
 decimal -= thresholds[i];
 roman += letters[i];
 }
 }
 return roman;
}

//Calculates result <- result op num
void applyOperator(int& result, const char& op, const int& num){
 if(op == '+'){
 result += num;
 }
 else if(op == '-'){
 result -= num;
 }
 else if(op == '*'){
 result *= num;
 }
 else if(op == '/'){
 result /= num;
 }
 else {
 result %= num;
 }
}

int main()
{
 string num;

67

2019

 char op;
 cin >> num >> op;
 int result = romanToDecimal(num);
 while (op != '='){
 cin >> num;
 applyOperator(result, op, romanToDecimal(num));
 cin >> op;
 }

 cout << decimalToRoman(result) << endl;
}

68

2019

26 Playing 4-9!
15 points

Introduction
HP is developing an online videogame called "4-9". In a "4-9" game, several players battle over a large field
trying to be the last man standing, who turns out to be the single winner of the round. However, if players
are being eliminated, the battlefield can start to be too big to allow the remaining players to find their
opponents, which could lead the game to take too much to complete in a reasonable amount of time.

To come up with that, when a certain number of players have been eliminated, the game itself delimits a
small area in the field where the players must move in. After a given time, all the players laying outside this
"safety area" are eliminated, forcing them to get closer and closer while trying to survive if they want to
win the round.

Here, we want you to help us develop the algorithm in charge of detecting the position of the players in the
field once the "safety area" has been deployed. Basically, we need to know what happens with each player:
do they continue playing or are eliminated?

Input
The input of your program should, first, read the size of the side of the battlefield (it has always a square
shape). Later, we provide you a snapshot of the current state of the field in form of matrix. Each position of
the matrix holds a single character that can stand for the following:

- If it is a ".", it means that in such position of the field there is nobody.
- If it is a capital letter, it means that the player identified with such character is in that position of the

field.
- Finally, the character "!" will be used to delimit the "safety area", which will always have a

rectangular shape.

Output
The output of your program must be a sentence per each player in the battle zone indicating whether they
are alive or have been eliminated. More specifically, for a given player X, we will be saying "Player X has
been eliminated" if it has been eliminated or "Player X is still alive" if it is inside the "safety area". The order
in which the players must be mentioned has to be from top to bottom and from left to right.

Example

Input
6
.....F
.!!!!.
.!O.!.
.!.C!.
.!..!.
.!!!!.

Output
Player F has been eliminated
Player O is still alive
Player C is still alive

69

2019

Python3

to use ‘read’ install -> pip3 install jutge
size = read(int)
field = [[0 for i in range(size)] for j in range(size)]

left = -1; right = -1; up = -1; down = -1
for i in range(size):
 for j in range(size):
 field[i][j] = read(chr)
 if field[i][j] == '!':
 if up == -1:
 up = i
 if left == -1:
 left = j
 down = i; right = j

for i in range(size):
 for j in range(size):
 if field[i][j] != '!' and field[i][j] != '.':
 if i > up and i < down and j > left and j < right:
 print('Player ' + field[i][j] + ' is still alive')
 else:
 print('Player ' + field[i][j] + ' has been eliminated')

70

2019

C++

#include <iostream>
#include <stdint.h>
#include <vector>

int main()
{
 // Read matrix size
 uint32_t size;
 std::cin >> size;

 // Read matrix and detect safety area
 std::vector< std::vector<char> > field(size, std::vector<char>(size));
 int32_t up = -1, down = -1, left = -1, right = -1;
 for (uint32_t i = 0; i < size; ++i)
 {
 for (uint32_t j = 0; j < size; ++j)
 {
 std::cin >> field[i][j];
 if (field[i][j] == '!')
 {
 if (up == -1)
 {
 up = i;
 }
 if (left == -1)
 {
 left = j;
 }
 down = i;
 right = j;
 }
 }
 }

 // Show player's status
 for (uint32_t i = 0; i < size; ++i)
 {
 for (uint32_t j = 0; j < size; ++j)
 {
 if (field[i][j] != '!' && field[i][j] != '.' && std::isupper(field[i][j]))
 {
 if (i > up && i < down && j > left && j < right)
 {
 std::cout << "Player " << field[i][j] << " is still alive" <<
std::endl;
 }
 else
 {
 std::cout << "Player " << field[i][j] << " has been eliminated"
<< std::endl;
 }
 }
 }
 }
}

71

2019

27 Rolling dice game
17 points

Introduction
James Bond enters a casino to play his favourite game: Hold’em Texas Poker. But he got a very bad surprise!
In this casino, they only play a very weird game: Rolling Dice! The casino manager throws some dice, and
players must bet against the total result that will appear. The total result is the sum of each individual die
result.

For every game, the casino manager may roll a different type of die, and a different amount of dice of the
selected type! So, which combinations are the most probable?

You are asked to write a program that computes the probability of a certain result given the number of dice
and the number of faces of those dice.

HINT: The probability of a certain event is computed as the "positive cases" divided by "the
total number of cases". For example, given a die of 6 faces, the probability of getting a 3 is
1/6 = 0.167 and the probability of getting a 22 is 0/6 = 0.000.

Input
The input is set by three non-negative integers separated by spaces:

- The first number is the amount of dice.
- The second number is the amount of faces per die greater than 3.
- The third number is the number of which you want to know its probability.

Output
A sentence specifying the probability for the given input following this format:
The probability of getting a W with X dice of Y faces is X.XXX
The probability X must be round to the third decimal and always printed out with 3 decimals.

Example 1

Input
2 6 8

Output
The probability of getting a 8 with 2 dice of 6 faces is 0.139

72

2019

Example 2

Input
1 12 11

Output
The probability of getting a 11 with 1 dice of 12 faces is 0.083

Python3

import itertools

Define Rolling Dice
N is number of dice
M is number of faces of dice

data = input().split()
N = int(data[0])
M = int(data[1])
expctd_result = int(data[2])

cases = list(itertools.product(range(1,M+1),repeat=N))
n_cases = len(cases)

results = [sum(x) for x in cases]

probabilities = dict((x, round(results.count(x)/float(n_cases),3)) for x in set(results))

If statement to prevent expct_result not in set(results)
if not(expctd_result in set(results)):
 expctd_p = 0.0
else:
 expctd_p = probabilities[expctd_result]

print("The probability of getting a " + str(expctd_result) + " with " + str(N) + " dice of " + str(M) +
" faces is " + "{:.3f}".format(expctd_p))

73

2019

C++

#include <iostream>
using namespace std;

int ft(int n) {
 if (n == 0) return 1;
 return ft(n-1)*n;
}

int binomial(int n,int k) {
 return (ft(n)/(ft(n-k)*ft(k)));
}

int main() {
 cout.setf(ios::fixed);
 cout.precision(3);

 int dices, faces, num;
 cin >> dices >> faces >> num;
 double val = 0;
 if (dices == 1) {
 if (dices*faces >= num) val = (double)dices/(double)faces;
 }
 else {
 if (dices*faces >= num) {

 int total = pow(faces,dices);
 int fin = (faces-dices)/num;
 for (int k=0; k<=fin; ++k) {
 int c2 = binomial(faces-num*k-1, dices-1);
 int c1 = binomial(dices,k);
 val += pow(-1,k) * c1 * c2;
 }
 val /= (double)total;
 }
 }
 cout << "The probability of getting a " << num << " with " << dices << " dice ";
 cout << "of " << faces << " faces is " << val << endl;
}

74

2019

28 Network graph
20 points

Introduction
As we are little hackers we need to send some packages through a computer network to avoid being
detected by other spies.

Each computer in the network has its own identifier called IP address which is formed by 4 numbers
separated by dots (e.g. 192.168.1.1). One computer can have one or more connection links to one or more
computers in the network.

In the computer network you are going to use, it has some costs to send a package on a link between two
computers. Notice that the cost is represented as the number over the link to find out its cost. And as you
would imagine we have a short budget, so the lower price the better.

Could you program the way to find a path into the computer networks proposed to send that package?

HINT: All the IP address follow the format W.X.Y.Z where W, X, Y and Z are integer values in
the range of [0..255].

Input
The input consists of several lines.
The first line will contain the IP address of the computer that sends the message.
The second line will contain the IP address of the computer that receives the message.
A variable number of lines will contain the different links that belong to the computer network. The syntax
for each line will be:
ip_address_computer_x:cost:ip_address_computer_y

Output
A positive integer value representing the output will be the lower cost possible to connect the computer
that sends the message and the computer that receives it.

75

2019

Example 1

Input
172.168.1.1
172.168.1.254
172.168.1.1:7:172.168.1.254
172.168.1.1:12:172.168.1.254
172.168.1.1:5:172.168.1.27
172.168.1.254:1:172.168.1.27

Output
6

Example 2

Input
172.168.1.27
172.168.1.254
172.168.1.1:7:172.168.1.254
172.168.1.1:12:172.168.1.254
172.168.1.1:5:172.168.1.27
172.168.1.254:1:172.168.1.27

Output
1

Python3

from sys import stdin
import copy

inf = 99999

def get_origin(connection):
 return connection.split(':')[0]

def get_target(connection):
 return connection.split(':')[2]

def get_cost(connection):
 return connection.split(':')[1]

def solution(origin, target, network, visited_nodes):
 # initialize variables
 local_network = copy.deepcopy(network)
 min_path_cost = inf

 # get connections to be analyzed: these are the ones that has origin and are not visited now
 connections = list(filter(lambda x: get_origin(x) == origin or get_target(x) == origin,
local_network))
 for visited in visited_nodes:
 connections_to_remove = list(filter(lambda x: get_origin(x) == visited
 or get_target(x) == visited, connections))
 for connection_to_remove in connections_to_remove:
 connections_to_remove.remove(connection_to_remove)

 connections.sort(key=(lambda x: int(get_cost(x))))

 # mark as visited node
 visited_nodes.append(origin)

 while connections:
 connection_to_explore = connections.pop(0)
 local_network.remove(connection_to_explore)

 # if connection reaches target return cost
 if get_origin(connection_to_explore) == target or get_target(connection_to_explore) ==
target \
 and int(get_cost(connection_to_explore)) < min_path_cost:
 return int(get_cost(connection_to_explore))

76

2019

 else:
 node_to_explore = get_origin(connection_to_explore) if
get_origin(connection_to_explore) != origin \
 else get_target(connection_to_explore)
 this_path_cost = solution(node_to_explore, target, local_network, visited_nodes)
 if this_path_cost is not None:
 this_path_cost += int(get_cost(connection_to_explore))
 if this_path_cost < min_path_cost:
 min_path_cost = this_path_cost
 else:
 pass
 else:
 pass

 return min_path_cost if min_path_cost != inf else None

################
Main program #
################

Read the origin node from standard input
origin_node = input()

Read the target node from standard input
target_node = input()

Create an empty network list
network = []

Read the network data from following lines and remember to remove the trailing \n character
from each line
for line in stdin:
 # Appedd the connection between two nodes to the network data list
 network.append(line.strip())

Finally execute the solution based on Dijkstra shortest path algorithm
print(solution(origin_node, target_node, network, []))

77

2019

C++

#include <vector>
#include <iostream>
#include <queue>
#include <map>
#include <limits>
using namespace std;

typedef pair<int,int> WArc;
typedef vector<vector<WArc> > Wgraph;
const int infinit = numeric_limits<int>::max();

int dijkstra(const Wgraph& G, int initial, int final) {
 int n = G.size();
 vector<int> d(n, infinit); d[initial] = 0;
 vector<int> p(n, -1);
 vector<bool> S(n, false);
 priority_queue<WArc, vector<WArc>, greater<WArc> > Q;
 Q.push(WArc(0, initial));
 while (not Q.empty()) {
 int u = Q.top().second; Q.pop();
 if (not S[u]) {
 S[u] = true;
 for (WArc a : G[u]) {
 int v = a.second;
 int c = a.first;
 if (d[v] > d[u] + c) {
 d[v] = d[u] + c;
 p[v] = u;
 Q.push(WArc(d[v], v));
 }
 }
 }
 }
 return d[final];
}

int main() {
 string dest, orig;
 cin >> orig >> dest;
 string path;
 int i = 0;
 map<string,int> m;
 vector<string> entry;
 while (cin >> path) {
 entry.push_back(path);
 int pos = path.find(":");
 int posr = path.rfind(":");
 string ori = path.substr(0,pos);
 string dst = path.substr(posr+1);
 if (m.find(ori) == m.end()) m[ori] = i++;
 if (m.find(dst) == m.end()) m[dst] = i++;
 }
 int n = m.size();
 Wgraph g(n);

 for (string path:entry) {
 int pos = path.find(":");
 int posr = path.rfind(":");
 int cost = stoi(path.substr(pos+1, posr-pos));

78

2019

 string ori = path.substr(0,pos);
 string dst = path.substr(posr+1);
 g[m[ori]].push_back({cost, m[dst]});
 g[m[dst]].push_back({cost, m[ori]});
 }
 int node = m[orig];
 int final = m[dest];

 cout << dijkstra(g, node, final) << endl;
}

79

2019

29 Blobs
22 points

Introduction
Given a binary (black and white) image (2D matrix), calculate how many blobs it contains. A blob is single
black pixel or a set of connected black pixels.

Two black pixels are connected if there is a path of black pixels between them. Adjacent pixels (A) of a pixel
(P) are those connected horizontally and vertically, like in the representation below:

A
APA
A

Input
A line with 2 positive numbers, which are the columns and the rows of the image, followed by as many
lines as image rows, where the white pixels are depicted by '.' and the black ones by '#'.

Output
The number of blobs in the image.

Example 1

Input
7 5
.......
.##....
.##.##.
.....#.
.......

Output
2

Example 2

Input
3 4
...
.#.
.#.
...

Output
1

80

2019

Python3

This function erases in a recursive way all the black pixels connected to the pixel (x,y)
def eraseBlob(img, w, h, x, y, fg, bg):
 #print(x,y, img[x][y])
 if img[x][y] != fg:
 return
 else:
 img[x][y] = bg
 if x+1 < h:
 eraseBlob(img,w,h,x+1,y,fg,bg)
 if x-1 >= 0:
 eraseBlob(img,w,h,x-1,y,fg,bg)
 if y+1 < w:
 eraseBlob(img,w,h,x,y+1,fg,bg)
 if y-1 >= 0:
 eraseBlob(img,w,h,x,y-1,fg,bg)

Debug: print image
def printImg(img, w, h):

 for i in range(h):
 for j in range(w):
 print(img[i][j], end="")
 print("")
 print("")

Read size w x h
w, h = map(int, input().split())

Initialize image
img = [x[:] for x in [['x'] * w] * h]

Read image
for i in range(h):
 line = input()
 for j in range(w):
 img[i][j] = line[j]

#printImg(img,w,h)

Count blobs
bg = "."
fg = "#"
count = 0
for i in range(h):
 for j in range(w):
 # We found a new part
 if img[i][j] == fg:
 count += 1
 eraseBlob(img,w,h,i,j,fg,bg)

print(count)

#printImg(img,w,h)

81

2019

C++

#include <bits/stdc++.h>
using namespace std;

void erase(vector<vector<char> > &v, int i, int j) {
 int n = v.size();
 int m = v[0].size();
 if (v[i][j] == '.') return;
 else {
 v[i][j] = '.';
 if (i+1 < n) erase(v,i+1,j);
 if (i-1 >= 0) erase(v,i-1,j);
 if (j+1 < m) erase(v,i,j+1);
 if (j-1 >= 0) erase(v,i,j-1);
 }
}

int main() {
 int n, m;
 cin >> n >> m;
 vector<vector<char> > v(m,(vector<char>(n)));
 for (auto &x:v)
 for (auto &y:x)
 cin >> y;

 int count = 0;
 for (int i=0; i<m; ++i) {
 for (int j=0; j<n; ++j) {
 if (v[i][j] == '#') {
 ++count;
 erase(v,i,j);
 }
 }
 }
 cout << count << endl;
}

82

2019

30 Quantum gates
23 points

Introduction
Quantum computing is the new paradigm of the computation, it is said to be the next technology revolution!
It takes advantage of the ability of subatomic particles to exist in more than one state at any time. Due to
the way the tiniest of particles behave, operations can be done much more quickly and use less energy than
classical computers.

In classical computing, a bit is a single piece of information that can exist in two states: 1 or 0. Quantum
computing uses quantum bits, aka qubits. These qubits have also two states, but these states can exist
simultaneously because of the superposition of these values. This is the magic of quantum computing, a
qubit can have the two values at the same time until it is measured!

This behavior is described in terms of the probability that when the qubit is measured becomes 0 or 1. It is
expressed through bra-ket notation that basically means to put everything inside | and >, so the 0 now is
|0>, the 1 became |1> and the qubit q is notated as |q>. So,

means that the probability to be |0> is a2 and the probability to be 1 is b2 where the coefficients a and b
are complex numbers. Usually qubits are also expressed following as a vector:

As an example, to describe a qubit with the same probability (50%) to become a 0 or 1 then the value of the
coefficients a and b should be:

And the qubit will be:

As in classical computing, there are logical gates (AND, OR, NOT, …) to define the circuits; in quantum
computing they are known as quantum gates and are used to create quantum circuits. Single-qubit gates
are the simplest and these are the Pauli (X, Y and Z) and the Hadamard (H) gates. Since a qubit can be
thought of like an imaginary sphere. Whereas a classical bit can be in two states – at either of the two poles
of the sphere – a qubit can be any point on the sphere. Consequently, the quantum gates would manipulate
the qubit direction inside the sphere. To support such transformations the quantum gates are represented
using matrices.

83

2019

But despite all this complexity, to solve a quantum circuit is as easy as doing operations with matrix and
vectors, so if we represent the qubits as vectors, to solve a quantum circuit is to multiply a matrix with a
vector.

Then the circuit, given the input qubit |q> and the quantum gates G1, G2, G3..., GN in line the resulting qubit
|q'> will be doing the following operations:

- |q1> = G1 * |q>
- |q2> = G2 * |q1>
- |q3> = G3 * |q2>
- ...
- |q'> = GN * |q(n-1)>

We ask you to program an algorithm that given an input qubit and a quantum circuit using the quantum
gates described before, it outputs the resulting qubit.

Input
The input is described in five lines. The first two lines describe the coefficient a, the first line represents
the real part of coefficient and the second is the complex (i) part of coefficient. The third and fourth line
describe the coefficient b, the third line represents the real part of coefficient and the fourth is the
complex (i) part of coefficient. Finally, the last line represents the quantum circuit as a string with the
sequence of gates

Output
Write output in terms of (a1 + a2i) |0> + (b1 + b2i) |1> with three decimals precision.

84

2019

Example 1

Considering the qubit |q> = 1/√2+0i|0> + 1/√2+0i|1> and this quantum circuit: a H gate following by an X
gate.

Input
0.707
0
0.707
0
HX

Output
(0.000+0.000i)|0> + (1.000+0.000i)|1>

Example 2

Considering the qubit |q> = 1+0i|0> + 0+0i|1> and this quantum circuit: just an X gate.

Input
1
0
0
0
X

Output
(0.000+0.000i)|0> + (1.000+0.000i)|1>

Example 3

Considering this qubit |q> = 1.006|0> + 0+0.111i|1> and this quantum circuit: a Z gate followed by a H gate.

Input
1.006
0
0
0.111
ZH

Output
(0.711-0.078i)|0> + (0.711+0.078i)|1>

85

2019

Example 1 developed step by step

Given the qubit (0.707+0.0i)|0> + (0.707+0.0i)|1> and the circuit HX find out the resulting qubit. First step
means to apply the gate H to the current qubit:

For the second step just apply the gate X to the qubit |q1>:

So, the resulting qubit is (0.000+0.000i)|0> + (0.100+0.000i)|1>

Matrix operations

Multiplying a real value (A) and a matrix:

Multiplying a matrix and a vector:

Basic operations with complex numbers

Given two complex numbers z1 and z2,

- z1 = x1 + (y1)i

- z2 = x2 + (y2)i

then the basic operations are:

- Adding two complex numbers: z1 + z2 = (x1 + x2) + (y1 + y2)i

- Subtracting two complex numbers: z1 - z2 = (x1 - x2) + (y1 - y2)i

- Multiplying a complex number z1 by a real number A: A * z1 = A * x1 + (A * y1)i

- Multiplying two complex numbers: z1 * z2 = (x1 * x2) - (y1 * y2) + (x1 * y2 + x2 * y1)i

86

2019

Python3

Import mathematical libs needed for complex numbers and other functions
import cmath
import math

Each quantum gates is represented using by a matrix

Hadamard (H) gate
h = 1/math.sqrt(2)
H = [complex(h,0), complex(h,0), complex(h,0), complex(-h,0)]

Pauli-X gate
X = [complex(0,0), complex(1,0), complex(1,0), complex(0,0)]

Pauli-Y gate
Y = [complex(0,0), complex(0,-1), complex(0,1), complex(0,0)]

Pauli-Z gate
Z = [complex(1,0), complex(0,0), complex(0,0), complex(-1,0)]

Auxiliar matrix
m = [complex(0,0), complex(0,0), complex(0,0), complex(0,0)]

Read the input
Real part for a
real_part = float(input())
Imaginary part for a
imaginary_part = float(input())
Build the complex number z1
z1 = complex(real_part, imaginary_part)
Real part for b
real_part = float(input())
Imaginary part for b
imaginary_part = float(input())
Build the complex number z2
z2 = complex(real_part, imaginary_part)
Read the description of the circuit as a string
quantum_circuit = input()

Internal check to validate that the entered data is a valid qubit: a^2 + b^2 = 1
res = pow(z1,2) + pow(z2,2)
if round(res.real) != 1:
 print("Invalid qbit data entered! Please review that the condition a^2 + b^2 = 1 is correct")
else:

 # Initialize the qubit with a and b factors read from input
 q1 = z1
 q2 = z2

 for i in quantum_circuit:
 # print(q1, q2)

 # Get the values for the current quantum gate
 if i == "H":
 m = H

 if i == "X":
 m = X

 if i == "Y":

87

2019

 m = Y

 if i == "Z":
 m = Z

 # Apply the multiplying quantum gate matrix - qubit vector and store the values in temporal
variables
 t1 = m[0] * q1 + m[1] * q2
 t2 = m[2] * q1 + m[3] * q2

 # Finally update the qubit (a and b factors) from the temporal variables
 q1 = t1
 q2 = t2

 print("("+"{:0.3f}".format(round(q1.real,3))+"{:+0.3f}".format(round(q1.imag,3))+"i)|0> +
("+"{:0.3f}".format(round(q2.real,3))+"{:+0.3f}".format(round(q2.imag,3))+"i)|1>")

C++

#include <stdint.h>
#include <iostream>
#include <iomanip>
#include <stdlib.h>
#include <cmath>

typedef struct TSComplexNumber
{
 float real;
 float i;
} ComplexNumber;

typedef struct TSQubit
{
 ComplexNumber alfa;
 ComplexNumber beta;
} Qubit;

typedef struct TSQuantumGate
{
 float scalar;
 ComplexNumber matrix[2][2];
}QuantumGate;

QuantumGate H;
QuantumGate X;
QuantumGate Y;
QuantumGate Z;

void initMatrices()
{
 H.scalar = 1/sqrt(2);
 H.matrix[0][0].real = 1; H.matrix[0][0].i = 0;
 H.matrix[0][1].real = 1; H.matrix[0][1].i = 0;
 H.matrix[1][0].real = 1; H.matrix[1][0].i = 0;
 H.matrix[1][1].real = -1; H.matrix[1][1].i = 0;

 X.scalar = 1;
 X.matrix[0][0].real = 0; X.matrix[0][0].i = 0;
 X.matrix[0][1].real = 1; X.matrix[0][1].i = 0;
 X.matrix[1][0].real = 1; X.matrix[1][0].i = 0;

88

2019

 X.matrix[1][1].real = 0; X.matrix[1][1].i = 0;

 Y.scalar = 1;
 Y.matrix[0][0].real = 0; Y.matrix[0][0].i = 0;
 Y.matrix[0][1].real = 0; Y.matrix[0][1].i = -1;
 Y.matrix[1][0].real = 0; Y.matrix[1][0].i = 1;
 Y.matrix[1][1].real = 0; Y.matrix[1][1].i = 0;

 Z.scalar = 1;
 Z.matrix[0][0].real = 1; Z.matrix[0][0].i = 0;
 Z.matrix[0][1].real = 0; Z.matrix[0][1].i = 0;
 Z.matrix[1][0].real = 0; Z.matrix[1][0].i = 0;
 Z.matrix[1][1].real = -1; Z.matrix[1][1].i = 0;
}

/*
 c1 = a1 + (b1)i
 c2 = a2 + (b2)i
 c1 + c2 = a1+a2 +(b1 + b2)i
 */
ComplexNumber SumComplexs(ComplexNumber &a_firstComplex, ComplexNumber &a_secondComplex)
{
 ComplexNumber tmpRes;
 tmpRes.real = a_firstComplex.real + a_secondComplex.real;
 tmpRes.i = a_firstComplex.i + a_secondComplex.i;

 return tmpRes;
}

/*
 c1 = a1 + (b1)i
 c2 = a2 + (b2)i
 c1 * c2 = (a1*a2)-(b1*b2)+(a1*b2 + a2*b1)i
 */
ComplexNumber ProductComplexs(ComplexNumber &a_firstComplex, ComplexNumber &a_secondComplex)
{
 ComplexNumber tmpRes;
 tmpRes.real = a_firstComplex.real*a_secondComplex.real -
a_firstComplex.i*a_secondComplex.i;
 tmpRes.i = a_firstComplex.real*a_secondComplex.i +
a_firstComplex.i*a_secondComplex.real;

 return tmpRes;
}

/*
 c1 = a1 + (b1)i
 A*c1 = (A*a1)+(A*b1)i
 */
ComplexNumber ProductScalarComplex(float a_scalar, ComplexNumber &a_complex)
{
 ComplexNumber tmpRes;
 tmpRes.real = a_scalar * a_complex.real;
 tmpRes.i = a_scalar * a_complex.i;

 return tmpRes;
}

/*
 | a b | | A | | Aa + Bb |
 | | * | | = | |

89

2019

 | c d | | B | | Ac + Bd |
*/
Qubit ProductQuantumGateQubit(QuantumGate &a_quantumGate, Qubit &a_qubit)
{
 Qubit res;
 ComplexNumber aux1, aux2;

 aux1 = ProductComplexs(a_quantumGate.matrix[0][0], a_qubit.alfa);
 aux2 = ProductComplexs(a_quantumGate.matrix[0][1], a_qubit.beta);
 res.alfa = SumComplexs(aux1, aux2);

 aux1 = ProductComplexs(a_quantumGate.matrix[1][0], a_qubit.alfa);
 aux2 = ProductComplexs(a_quantumGate.matrix[1][1], a_qubit.beta);
 res.beta = SumComplexs(aux1, aux2);

 res.alfa = ProductScalarComplex(a_quantumGate.scalar, res.alfa);
 res.beta = ProductScalarComplex(a_quantumGate.scalar, res.beta);

 return res;
}

void ShowComplexNumber(ComplexNumber &a_complex)
{
 float tmpRounded = round(a_complex.real * 1000.0) / 1000.0;
 std::cout << std::fixed;
 std::cout << std::setprecision(3) << tmpRounded;

 tmpRounded = round(a_complex.i * 1000.0) / 1000.0;
 if (tmpRounded >= 0)
 std::cout << "+" ;

 std::cout << std::setprecision(3) << tmpRounded << "i";
}

int main()
{
 Qubit qIn, qRes;
 std::string quantumCircuit;
 std::string aux;

 initMatrices();

 // Read first complex number for the |0> coeficient
 std::cin >> aux;
 qIn.alfa.real = atof(aux.c_str());
 std::cin >> aux;
 qIn.alfa.i = atof(aux.c_str());

 // Read second complex number for the |1> coeficient
 std::cin >> aux;
 qIn.beta.real = atof(aux.c_str());
 std::cin >> aux;
 qIn.beta.i = atof(aux.c_str());

 // Read quantum circuit
 std::cin >> quantumCircuit;

 // Initialize qbit result as initial qubit
 qRes.alfa.real = qIn.alfa.real;
 qRes.alfa.i = qIn.alfa.i;
 qRes.beta.real = qIn.beta.real;
 qRes.beta.i = qIn.beta.i;

90

2019

 // Perfom operations of quantum gates one by one
 for (uint8_t iCnt = 0; iCnt < quantumCircuit.length(); iCnt++)
 {
 switch(quantumCircuit[iCnt])
 {
 case 'H':
 qRes = ProductQuantumGateQubit(H, qRes);
 break;
 case 'X':
 qRes = ProductQuantumGateQubit(X, qRes);
 break;
 case 'Y':
 qRes = ProductQuantumGateQubit(Y, qRes);
 break;
 case 'Z':
 qRes = ProductQuantumGateQubit(Z, qRes);
 break;
 default:
 break;
 }
 }

 // Write output in terms of (a0 + b0i) |0> + (a1 + b2i) |1> with three decimals precision
 std::cout << "(" ;
 ShowComplexNumber(qRes.alfa);
 std::cout << ")|0> + (" ;
 ShowComplexNumber(qRes.beta);
 std::cout << ")|1>" ;

 std::cout << std::endl;

}

91

2019

31 Settlers of CodeWars
24 points

Introduction
Do you know the multiplayer board game Settlers of Catan? With more than 22 million copies sold in 30
different languages, it is one of the most popular board games in the world.

A Catan board is made up of hexagonal shaped tiles that fit together. Each tile is assigned a number
between 2-12 (not including 7), and a resource. In addition to these, there will be one blank line called a
desert, which we will refer to as the number 0. For the purpose of this problem, we will only focus on the
number of the tile and ignore the resource.

Catan always starts the same way. Each player needs to choose two crossroads of the board. A crossroads
is the point where three tiles intersect.

Like many board games, Catan is played with by rolling two dices, each die having six faces. The result of a
roll determines which players can get resources. Thus, you can increase your chances of getting at least
one resource per roll if your chosen crossroads target the major variety of numbers. Follow the examples
to get a better understanding about the results of a roll and how players can get resources.

Example 1

92

2019

Example 2

But, what are the two best crossroads to choose?

Your objective is to build a program that, given a Catan board, computes which two crossroads, combined,
maximizes the chances of getting at least one resource per roll. These must be inner crossroads (ones
where 3 tiles intersect).

Input
The input of your program is a sequence of numbers, in different lines, which make up the board according
to the numbers of each tile. Each number is separated by a single token. The first line has 3 numbers, the
second 4 numbers, the third 5 numbers, the fourth 4 numbers and last line 3 numbers again.

Output
The output must be two numbers, separated by a single token and sorted in ascending order, each one
referring to a crossroad identifier. Those two crossroads are the best initial choice. Check the figure below
to see the map of crossroad identifiers.

If there is more than one best choice, separate them with a space. Sort the results in ascending order with
respect to the first number of each choice (see Example 2).

93

2019

Example 1

Input
11 12 9
4 6 5 10
0 3 11 4 8
8 10 9 3
5 2 6

Output
20 24

Example 2

Input
12 5 11
9 0 2 3
8 3 6 4 9
10 4 5 11
8 10 6

Output
6 16
6 17
6 23

Example 3

Input
11 4 5
10 5 11 9
9 3 6 3 4
6 2 0 8
12 8 10

Output
9 19

Python3

import sys
import itertools

1. Get all board lines
fields = 3 # (x,y,tile number), 3 fields
hex_list = [] # define the list that will contain tiles information
tile_row = 0 # index to travel through "x" dimension of tiles
row = 0 # index that point to each tile
num_tiles = 0 # define variable num_tiles
offset = 0 # define offset postion to be used to "y" dimension of tiles

Find each tile information, x, y and tile number
for line in sys.stdin:
 line_parse = line.split(" ") # Parse line and remove space

 if num_tiles < len(line_parse):
 offset = 0
 else:
 offset = offset + 1

 num_tiles = len(line_parse)

 cont = 0
 for row in range(row,num_tiles+row):
 hex_list.append([0]*fields) # generate new "tile" array
 hex_list[row][0] = tile_row # "x" of tile
 hex_list[row][1] = cont+offset # "y" of tile
 hex_list[row][2] = int(line_parse[cont]) # "tile number" field
 cont = cont + 1

 row = row +1
 tile_row = tile_row + 1

Algorithm to find each addressable crossroad
crossroads = []
n_tiles = len(hex_list)
coordinates = [x[0:2] for x in hex_list]
sequence = [[1,1],[1,0],[0,-1],[-1,-1],[-1,0],[0,1],[1,1]]
#sequence = [[-1,-1],[-1,0],[0,1],[1,1],[1,0],[0,-1],[-1,-1]]

94

2019

for n in range(n_tiles):
 tile = coordinates[n]

 for k in range(6):
 # Follow sequence to find each tile neighbor
 operator_1 = sequence[k]
 operator_2 = sequence[k+1]

 neighbor_1 = [x+y for x,y in zip(tile,operator_1)]
 neighbor_2 = [x+y for x,y in zip(tile,operator_2)]

 # Check if found neighbor is a defined coordinate or not
 if (neighbor_1 in coordinates) and (neighbor_2 in coordinates):
 n1_index = coordinates.index(neighbor_1)
 n2_index = coordinates.index(neighbor_2)

 scores = [hex_list[n1_index][2],hex_list[n2_index][2],hex_list[n][2]]
 scores.sort()

 crssrd = [neighbor_1, neighbor_2, tile]
 crssrd.sort()
 crssrd.append(scores)

 # Chek if crossroad found has been already found
 if crssrd in crossroads:
 continue
 else:
 crossroads.append(crssrd)
 else:
 #print "Tile not defined"
 continue

FIND WINNER COMBINATIONS ##
1. Find crossroads adjacent to "null" tile to be skipped later
search = 0
score_list = [x[-1] for x in crossroads]
skip_index = []

for sublist in score_list:
for k in range(len(sublist)):
if sublist[k] == search:
skip_index.append(score_list.index(sublist))
continue

2. Compute all combinations. Check for score condition
settlements = []
p_lut = {2: 1./36, 3: 2./36, 4: 3./36, 5: 4./36, 6: 5./36, 8: 5./36, 9: 4./36, 10: 3./36,
11:2./36, 12:1./36, 0: 0}

settle_index = list(itertools.combinations(range(len(crossroads)),2))

for ind_tuple in settle_index:
 ind = list(ind_tuple)
 score_1 = crossroads[ind[0]][-1]
 score_2 = crossroads[ind[1]][-1]
 score = list(set(score_1 + score_2))
 p_score = round(sum([p_lut[x] for x in score]),2)

 ind.append(p_score)
 settlements.append(ind)

scores = [x[-1] for x in settlements]

95

2019

best_choice_index = [x for x, value in enumerate(scores) if value==max(scores)]
best_choice = [settlements[k] for k in best_choice_index]
best_choice.sort()

for k in best_choice:
 val_1 = k[0]+1
 val_2 = k[1]+1
 #val_3 = k[2]

 print(str(val_1) + " " + str(val_2))
 #print k

96

2019

32 The Dragon King
31 points

Introduction
In a remote part of this world there is a place called the DragonValley, land of dragons. The last Dragon
King died recently and, according to the ancient tradition, the king's successors must prove their bravery to
become the next Dragon King. They do this by competing to see who is first to reach the Dragons' Gem,
which is stored at the top of the highest mountain in the land: the DragonEye.

However, there are a lot of different paths that link DragonValley to the DragonEye, and these paths have
a peculiarity: the direction of the wind changes every 30 minutes. Therefore, the time it takes a dragon to
fly from one point to another varies from the half hour to the next.

Please, help our friend Spyro find the quickest path from DragonValley to DragonEye and become the next
Dragon King!

HINT: Note that if a point is reached during the first half hour of the journey, the dragon can
either take the next path immediately, or wait until the next half hour and only then take the
second path. For example, if there is a connection "A B 50 15" and the dragon reaches A at
minute 20, the dragon can then continue on to B right away, which will take, a total of 20 +
50 = 70 minutes, or alternatively, it can wait 10 minutes in node A and then leave for B, which
will take a total of 20 + 10 + 15 = 45 minutes.

97

2019

Input
The input describes the connections between different points of the dragon lands. It starts with a number
N that indicates the amount of connections in the sky map, followed by the N connections.

Each connection is represented by 4 words: - The origin point O. - The destination point D. - The time (in
minutes) required to go from the O to D during the first half of an hour. - The time (in minutes) required to
go from the O to D during the second half of an hour.

The input must always contain the points DragonValley and DragonEye, which indicate the beginning and
the ending respectively.

Output
The output is the time of the quickest path from the DragonValley to the DragonEye, and the stops along
that path.

If there are 2 paths with an identical time, the path with fewer stops wins. If there are 2 paths with the same
time and the same number of stops, the first path in alphabetical order wins. For example: if the two
quickest paths are "DragonValley A DragonEye" and "DragonValley B DragonEye", the first path wins
because A goes before B.

Example 1

Input
5
DragonValley GreenFields 10 5
DragonValley BlueFields 15 5
DragonValley RedFields 20 5
RedFields DragonEye 5 10
GreenFields DragonEye 16 20

Output
Minimum time: 25
Minimum path: DragonValley RedFields DragonEye

Example 2

Input
5
DragonValley GreenFields 10 5
DragonValley BlueFields 15 5
DragonValley RedFields 20 5
RedFields DragonEye 5 10
GreenFields DragonEye 15 20

Output
Minimum time: 25
Minimum path: DragonValley GreenFields DragonEye

98

2019

Example 3

Input
9
DragonValley GreenFields 10 5
DragonValley BlueFields 15 5
DragonValley RedFields 20 5
RedFields SlimeRock 20 8
GreenFields DragonEye 210 184
SlimeRock BearHills 35 10
BearHills DragonEye 22 22
BlueFields DeepLagoon 34 10
DeepLagoon DragonEye 43 27

Output
Minimum time: 67
Minimum path: DragonValley BlueFields DeepLagoon DragonEye

Java

import java.util.Scanner;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.HashMap;
import java.util.TreeSet;

// Problem 32: The Dragon King
public class Main {

 // Adjacency list. Edges info ((dest, firstHalf, secondHalf)) by origin node name.
 static HashMap<String, LinkedList<Edge> > edges = new HashMap<String, LinkedList<Edge>
>();

 // All nodes discovered so far by node name (visited or reachable).
 static HashMap<String, Node > nodes = new HashMap<String, Node >();

 // Priority queue with reachable nodes that have not been visited. TreeSet used as a
priority queue because we will need to update nodes in any position within the queue (log(n)).
 static TreeSet<Node> queue = new TreeSet<Node>();

 public static void main(String[] args) throws Exception {
 // Parse edges information from input:
 //Scanner reader=new Scanner(new FileInputStream("Prob32a.in")); // Read from
sample test file
 Scanner reader=new Scanner(System.in); // Read from standard input (required
for the Judge)

 int N = reader.nextInt();
 while (N-- > 0) {
 String orig = reader.next();
 Edge e = new Edge();
 e.dest = reader.next();
 e.firstHalf = reader.nextInt();
 e.secondHalf = reader.nextInt();
 if (!edges.containsKey(orig))

99

2019

 edges.put(orig, new LinkedList<Edge>());
 edges.get(orig).add(e);
 }

 // Set the start node as the first reachable node at time 0:
 Node n = new Node();
 n.name = "DragonValley";
 n.time = 0;
 n.path = new ArrayList<String>();
 n.path.add(n.name);
 nodes.put(n.name, n);
 queue.add(n);

 while (selectNext()); // Iterate until DragonEye is reached.

 reader.close();
 }

 /***
 * All visited nodes have the minimum time and the most optimal path (number of steps,
then alpha order) from
 * "DragonValley" set.
 * In each selectNext() invocation, we select the non-visited node that is closest to
"DragonValley" through
 * any of the visited nodes (there is no better way to reach it from "DragonValley") and
we mark it as visited
 * (so we do not re-visit it later).
 * Then, we consider all the outgoing edges from this node to find new reachable nodes
and potentially improve
 * access to known reachable nodes.
 * @return true if we need to keep searching for the solution.
 */
 @SuppressWarnings("unchecked")
 private static boolean selectNext() {

 if (queue.size()<1) {
 System.err.println("Unexpected situation: There is no way to reach the
DragonEye");
 return false;
 }

 Node n = queue.first(); // Pick the closest node from the priority queue.
 //System.err.println("Processing "+n.name);
 queue.remove(n);
 n.visited = true;

 if (n.name.equals("DragonEye")) { // Found the optimal way to reach
"DragonEye"
 StringBuffer fullPath = new StringBuffer();
 for (String place : n.path)
 fullPath.append(" "+place);
 System.out.println("Minimum time: "+n.time);
 System.out.println("Minimum path:"+fullPath.toString());
 return false;
 }

 // Check what nodes can we reach from this node (if any).
 if (edges.containsKey(n.name)) {
 for (Edge e : edges.get(n.name)) {
 // Build a tentative representation of the destination node
going through this edge (e).
 Node tentative = new Node();

100

2019

 tentative.name = e.dest;
 tentative.time = n.time +
Math.min(delayFirstHalf(n.time)+e.firstHalf, delaySecondHalf(n.time)+e.secondHalf); // Consider
the best option including delays
 tentative.path = (ArrayList<String>) n.path.clone();
 tentative.path.add(tentative.name);

 Node dest = nodes.get(e.dest);
 if (dest == null) { // First time we can reach this node.
 nodes.put(tentative.name, tentative); // Add to
nodes.
 queue.add(tentative); // Add to
priority queue.
 }
 else if (!dest.visited && tentative.compareTo(dest)<0) { //
Tentative is better than previous node info (less time, steps or lexicographical order)
 nodes.put(tentative.name, tentative); // Replace the
node info.

 // Update the priority queue details.
 queue.remove(dest);
 queue.add(tentative);
 }
 }
 }

 return true;
 }

 private static int delayFirstHalf(int minutes) {
 return isFirstHalf(minutes) ? 0 : 60-(minutes%60);
 }
 private static int delaySecondHalf(int minutes) {
 return isFirstHalf(minutes) ? 30-(minutes%60) : 0;
 }
 private static boolean isFirstHalf(int minutes) {
 return minutes%60 < 30;
 }

 static class Edge{
 public String dest;
 public int firstHalf;
 public int secondHalf;
 }
 static class Node implements Comparable<Node> {
 public String name;
 public int time; // Optimal time to get to this node
(Integer.MAX_VALUE)
 public ArrayList<String> path; // Optimal path to get to this node
 public boolean visited = false;

 @Override
 public int compareTo(Node other) {
 if (this.time-other.time != 0) // Sort by time first.
 return this.time-other.time;
 if (this.path.size()-other.path.size() != 0) // Sort by path length
second.
 return this.path.size()-other.path.size();
 for (int i=0;i<this.path.size();i++) // Sort by lexicographically based
on path points.
 if (this.path.get(i).compareTo(other.path.get(i)) != 0)
 return this.path.get(i).compareTo(other.path.get(i));

101

2019

 return 0;
 }
 }

}

102

2019

C++

#include <iostream>
#include <map>
#include <string>
#include <vector>
#include <cassert>
#include <memory>
#include <queue>
#include <limits>
#include <functional>
#include <algorithm>

struct SkyLink
{
 int skyPointIdx;
 int time0;
 int time1;

 SkyLink(int sp, int t0, int t1)
 : skyPointIdx(sp)
 , time0(t0)
 , time1(t1)
 {}
};

struct SkyPoint
{
 std::string name;
 std::vector<SkyLink> links;
 int minPathTime;
 int minPathNumSkyPoints;
 std::vector<int> minPathPreviousSkyPointIdx;
 std::vector<int> minPathNextSkyPointIdx;

 static const std::string INI;
 static const std::string END;

 explicit SkyPoint(const std::string& n)
 : name(n)
 , minPathTime(std::numeric_limits<int>::max())
 , minPathNumSkyPoints(std::numeric_limits<int>::max())
 {}
};
const std::string SkyPoint::INI = "DragonValley";
const std::string SkyPoint::END = "DragonEye";

using SkyMap = std::vector<SkyPoint>;

int getSkyPointIdx(std::map<std::string, int>& dict, SkyMap& skyMap, const std::string& key)
{
 auto it = dict.find(key);
 if (it == dict.end())
 {
 int newIdx = skyMap.size();
 skyMap.emplace_back(key);
 dict[key] = newIdx;
 return newIdx;
 }
 else
 {

103

2019

 return it->second;
 }
}

void readSkyMap(SkyMap& skyMap, std::map<std::string, int>& dict)
{
 dict.clear();
 skyMap.clear();

 int numLinks = 0;
 std::cin >> numLinks;
 for (int i = 0; i < numLinks; ++i)
 {
 std::string orig, dest;
 int time0 = 0, time1 = 0;
 std::cin >> orig >> dest >> time0 >> time1;

 int origIdx = getSkyPointIdx(dict, skyMap, orig);
 int destIdx = getSkyPointIdx(dict, skyMap, dest);
 skyMap[origIdx].links.emplace_back(destIdx, time0, time1);
 skyMap[destIdx].links.emplace_back(origIdx, time0, time1);
 }
}

void findMinPath(SkyMap& skyMap, int ini, int end)
{
 auto compareSkyPoints = [&skyMap](int idx0, int idx1)
 {
 return skyMap[idx0].minPathTime > skyMap[idx1].minPathTime;
 };

 std::priority_queue<int, std::vector<int>, std::function<bool(int, int)>>
idxsQueue(compareSkyPoints);

 // Set to 0 the min dist of the origin node and add it to the priority queue
 skyMap[ini].minPathTime = 0;
 idxsQueue.push(ini);

 // Start the algorithm to find the minimum path from SkyPoint::INI to SkyPoint::END
 std::vector<bool> visited(skyMap.size(), false);
 while (!idxsQueue.empty())
 {
 // Get the SkyPoint with the minimum path until now
 int idx = idxsQueue.top();
 idxsQueue.pop();

 // If the node is the END, we are done
 if (idx == end)
 {
 break;
 }

 // If the node has been already visited, go to next one
 if (visited[idx])
 {
 continue;
 }

 // Mark the current sky point as visited
 visited[idx] = true;

 // Update all the linked SkyPoint with the minimum distance from the current node

104

2019

 int currTime = skyMap[idx].minPathTime;
 for (const SkyLink& link : skyMap[idx].links)
 {
 // Ignore the link if the sky point has been already visited
 if (visited[link.skyPointIdx])
 {
 continue;
 }

 // Get the times to next link
 int time0 = link.time0;
 int time1 = link.time1;

 // Apply the time offset to the link that needs it
 if ((currTime/30)%2 == 0)
 {
 // Current time is in the first half of an hour, offset the time1
 time1 += 30 - currTime%30;
 }
 else
 {
 // Current time is in the second half of an hour, offset the time0
 time0 += 30 - currTime%30;
 }

 // Get the time for the linked SkyPoint
 int bestTime = currTime + ((time0 < time1)? time0 : time1);

 int numSkyPoints = skyMap[idx].minPathNumSkyPoints + 1;

 // Update the linked SkyPoint with the best path from the current SkyPoint
 if (bestTime < skyMap[link.skyPointIdx].minPathTime)
 {
 skyMap[link.skyPointIdx].minPathTime = bestTime;
 skyMap[link.skyPointIdx].minPathNumSkyPoints = numSkyPoints;
 skyMap[link.skyPointIdx].minPathPreviousSkyPointIdx.clear();
 skyMap[link.skyPointIdx].minPathPreviousSkyPointIdx.push_back(idx);
 idxsQueue.push(link.skyPointIdx);
 }
 else if (bestTime == skyMap[link.skyPointIdx].minPathTime)
 {
 if (numSkyPoints < skyMap[link.skyPointIdx].minPathNumSkyPoints)
 {
 skyMap[link.skyPointIdx].minPathTime = bestTime;
 skyMap[link.skyPointIdx].minPathNumSkyPoints = numSkyPoints;
 skyMap[link.skyPointIdx].minPathPreviousSkyPointIdx.clear();
 skyMap[link.skyPointIdx].minPathPreviousSkyPointIdx.push_back(idx);
 idxsQueue.push(link.skyPointIdx);
 }
 else if (numSkyPoints == skyMap[link.skyPointIdx].minPathNumSkyPoints)
 {
 skyMap[link.skyPointIdx].minPathPreviousSkyPointIdx.push_back(idx);
 }
 }
 }
 }

 // Show the minimum time
 std::cout << "Minimum time: " << skyMap[end].minPathTime << std::endl;

 // Here we have the min path from END to INI. Build the min paths from INI to END.
 std::fill(visited.begin(), visited.end(), false);

105

2019

 std::queue<int> idxsQ;
 idxsQ.push(end);
 visited[end] = true;
 while (!idxsQ.empty())
 {

 int idx = idxsQ.front();
 idxsQ.pop();
 for (int prevIdx : skyMap[idx].minPathPreviousSkyPointIdx)
 {

 skyMap[prevIdx].minPathNextSkyPointIdx.push_back(idx);
 if (!visited[prevIdx])
 {

 idxsQ.push(prevIdx);
 visited[prevIdx] = true;

 }
 }

 }

 // Show the minimum path
 {

 std::cout << "Minimum path:";
 int idx = ini;
 std::cout << " " << skyMap[idx].name;
 while (idx != end)
 {
 assert(skyMap[idx].minPathNextSkyPointIdx.size() > 0);

 int nextIdx = skyMap[idx].minPathNextSkyPointIdx[0];
 for (int i = 1; i < skyMap[idx].minPathNextSkyPointIdx.size(); ++i)
 {

 int nextIdxCandidate = skyMap[idx].minPathNextSkyPointIdx[i];
 if (skyMap[nextIdxCandidate].name < skyMap[nextIdx].name)
 {

 nextIdx = nextIdxCandidate;
 }

 }
 idx = nextIdx;
 std::cout << " " << skyMap[idx].name;

 }
 std::cout << std::endl;

 }
}

int main()
{

 std::map<std::string, int> dict;
 SkyMap skyMap;
 readSkyMap(skyMap, dict);
 findMinPath(skyMap, dict[SkyPoint::INI], dict[SkyPoint::END]);

}

	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Example 1
	Example 2
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Example
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Example 1
	Example 2
	Introduction
	Input
	Output
	Example 1
	Example 2
	Example 3
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Example
	Introduction
	Input
	Output
	Example
	Introduction
	Input
	Output
	Example
	Introduction
	Input
	Output
	Example
	55 1 144 5
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Example
	Introduction
	Input
	Output
	Example 1
	The probability of getting a 8 with 2 dice of 6 faces is 0.139
	Example 2
	Input
	Output
	The probability of getting a 11 with 1 dice of 12 faces is 0.083
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Introduction
	Input
	Output
	Example 1
	Example 2
	Example 3
	Example 1 developed step by step
	Matrix operations
	Basic operations with complex numbers
	Introduction
	Example 1
	Example 2
	Input
	Output
	Introduction
	Input
	Output
	Example 1
	Example 2
	Example 3

