

Problems
and

Solutions

BCN 2024

Barcelona 2024

Problem Points

1 Integer Pranks 1

2 Display Data In 3D 2

3 Weighting Hydrocarbons 2

4 Atmospheric Pressure Converter 2

5 The Magellanic Strain 3

6 The Triplet Treasure Hunt 3

7 Automated Assistant Referee 3

8 Problem 42 4

9 Galactic Bracket Balancing Equilibrium 4

10 Meeting Across Dune 4

11 Nilats Athletes 5

12 Repeated Paints 5

13 Upside Down 6

14 Drawing Hydrocarbons 6

15 Lost Letters Staircase 7

16 Palindrome Parade 7

17 Mars Rover 8

18 The Kiss Precise 8

19 Say That Again? 9

20 Misfit Columns 9

21 Permutation Ciphering 9

22 Chess Board 11

23 Rule 90 11

24 Mixing Hats 12

25 Gaussian Blur 13

26 Sudoku Solver 15

27 Finding Achilles 17

28 Boggle Search 19

29 Battleship Board Sketcher 20

30 Treetronomical Challenge 25

31 Sustainable Batteries 30

32 Monster Slayer 35

Barcelona 2024

1

Barcelona 2024

1 Integer Pranks
1 points

Introduction

In Cipherworld integers love to play tricks on programmers. Your mission, should you choose to

accept it, is to write a program that can outsmart these mischievous integers. Your program should

read three integers and determine if they are in successive ascending order. Can you bring order

back to the world of programming and foil the pranks of these integers?

Input

The input is composed by three lines. Each line will contain a single integer. Three integer values are

different.

Output

The output will return True if the three integers are received in increasing order. Otherwise, the

output will be False.

Example 1

Input

5

10

3

Output

False

Example 2

Input

-11

-6

1

Output

True

2

Barcelona 2024

Python

a = int(input())

b = int(input())

c = int(input())

if (a < b and b < c):

 print("True")

else:

 print("False")

3

Barcelona 2024

2 Displaying Data In 3D
2 points

Introduction

Seeing in 3D is mostly about tricking your brain. Since our eyes are placed a bit apart from each

other, our brain receives two different images. Consequently, these images are shifted by a very

small amount from each other. Then, our brain proceeds to merge them to see a single image. Our

brain perceives depth because of the separation between these two images coming from the two

eyes.

The research project you’re currently focused on is about 3D glasses with augmented reality. For

example, when your eyes focus on a building, the glasses display the distance in meters to reach

that place. To provide the 3D effect, this data will be represented by the glasses to both eyes slightly

shifted.

The very first step for this process is to support the duplication of data to be displayed. This data will

then be shown to the left and right glasses. Can you write a program that reads a positive integer

and duplicates all of its digits?

Input

The input is a single line with a positive integer.

Output

The output is a single line with all the digits of the input duplicated.

Example

Input

12345

Output

1122334455

4

Barcelona 2024

Python

data = input()

result = ""

for i in data:

 result = result + 2*i

print(result)

5

Barcelona 2024

3 Weighting Hydrocarbons
2 points

Introduction

In organic chemistry, the hydrocarbon “alkane” is a molecule made up of linked Carbon (C) atoms

with Hydrogen (H) atoms branching off each Carbon like a tree structure. Here is the internal

structure of ethane (C2H6):

 H H

 | |

 H-C-C-H

 | |

 H H

Since you are frequently going to experiment with hydrocarbons in the chemistry lab, you decided

to code a program to quickly find out the atomic mass of a given molecule. Given the number of

Carbon atoms in a hydrocarbon, you can easily calculate the number of Hydrogen atoms:

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑯 𝒂𝒕𝒐𝒎𝒔 = (𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪 𝒂𝒕𝒐𝒎𝒔 ∗ 𝟐) + 𝟐

The atomic weight of the hydrocarbon molecule is calculated by multiplying the number of Carbon

atoms by 12 (its atomic mass) and adding the number of Hydrogen atoms (the atomic mass of

Hydrogen is 1).

Can you write a simple program to find the formula and atomic mass of the corresponding

hydrocarbon given the number of atoms of Carbon?

Input

The input is a positive integer representing the number of Carbon atoms

Output

The formula given the number of C and H atoms along with its atomic weight.

Example 1

Input

3

Output

The atomic mass of C3H8 is 44

Example 2

Input

2

Output

The atomic mass of C2H6 is 30

6

Barcelona 2024

Python

carbon = int(input())

hydrogen = carbon * 2 + 2

mass = 12 * carbon + hydrogen

print("The atomic mass of C" + str(carbon) + "H" + str(hydrogen) + " is " +

str(mass))

7

Barcelona 2024

4 Atmospheric Pressure Converter
2 points

Introduction

Changes in atmospheric pressure can tell us about the weather. If the pressure is high, it usually

means we will have nice, clear weather with lots of sunshine. If the pressure is low, it might mean that

rain or storms are on the way.

The pascal (Pa) is the unit of pressure in the International System of Units (SI). Your weather station

reports the measured atmospheric pressure in hectopascal (hPa). But your friend Eolo always asks

you about this data in millimeters of Mercury (mmHg).

Considering the conversion factors (1 mmHg = 133.322 Pa) can you write down a program that

converts data from hPa to mmHg with a precision of two decimal places.

Input

A positive integer value representing the pressure in hPa units.

Output

A positive float value representing the pressure in mmHg with a precision of two decimal places.

Example

Input

1018

Output

763.56

Python

pressurePa = int(input()) * 100

pressureMmHg = pressurePa / 133.322

print("{:.2f}".format(pressureMmHg))

8

Barcelona 2024

5 The Magellanic Strain
3 points

Introduction

From the Southern Hemisphere it’s possible to admire the Large and Small Magellanic Clouds, which

are satellite galaxies of the Milky Way. As some of the closest galaxies to our home galaxy, they

stand out as big, misty blobs of light under dark skies. A few days ago, a meteor was observed falling

between the two Magellanic Clouds.

Meteor falling between Magellanic Clouds

Unfortunately for mankind, after the meteor was collected, it was discovered that it was carrying an

extraterrestrial microbe inside. A team of scientists are studying the growth cycle of the microbe.

Like terrestrial bacteria, it follows a four-step process called binary fission to clone itself. This

process takes 13 minutes.

Binary Fission

9

Barcelona 2024

To control the Magellanic strain, the scientists urge you to develop a program to calculate the

microbe population after a given amount of time.

Input

The input is composed by two positive integers:

• The first value represents the number of microbes present at the beginning of the

measurement.

• The second value represents the amount of time in minutes left to allow bacteria growth.

Output

The output is a single integer reporting the total amount of microbe population expected.

Example 1

Input

3

0

Output

3

Example 2

Input

9

52

Output

144

Example 3

Input

1

25

Output

2

Python

initial_population = int(input())

minutes = int(input())

growthCycle = 13

numCycles = minutes // growthCycle

final_population = initial_population * (2**numCycles)

print(final_population)

10

Barcelona 2024

6 The Triplet Treasure Hunt
3 points

Introduction

In a distant land known as Numeria, there exists a mystical forest named Triplet Grove. Legends

have it that deep within this forest, there lies a hidden treasure of unimaginable wealth. The catch?

To unlock the treasure's location, one must possess the knowledge of the "Triplet Numbers."

The Triplet Numbers are special integers that are multiples of 3 and play a crucial role in unraveling

the treasure's mystery. The forest is enchanted with a magical aura that only reveals its secrets to

those who can harness the power of the Triplets.

As an aspiring treasure hunter, you find yourself standing at the edge of Triplet Grove, determined

to uncover its riches. However, you have a dilemma: you don't know where to begin your search.

A wise old sage approaches you and offers guidance. She tells you that the first step in deciphering

the forest's secrets is to understand the essence of the Triplet Numbers. She hands you a

parchment with a cryptic message:

"Seek the sum of the Triplet Numbers to unveil the path to riches."

With these words, she disappears into the forest mist, leaving you with a task. You must write a

program to calculate the sum of all multiples of 3 that are less than or equal to a given number n. This

sum, as you've been told, holds the key to unlocking the treasure's location deep within Triplet Grove.

Armed with your coding skills and the wisdom of the Triplet Numbers, you embark on this journey,

determined to reveal the secret of the enchanted forest and claim the long-lost treasure as your

own. Now, it's your turn to write the code and solve the mystery of the Triplet Numbers!

Input

The input is a positive integer

Output

The output is a positive integer.

11

Barcelona 2024

Example 1

Input

7

Output

9

Example 2

Input

15

Output

45

Python

value = int(input())

result = 0

for i in range(1,value+1):

 if (i % 3 == 0):

 result = result + i

print(result)

12

Barcelona 2024

7 Automated Assistant Referee
3 points

Introduction

To avoid controversy in the refereeing of soccer matches, it is planned to use a drone to perform

the duties of a linesman. Before making this system official, it is important to verify its correct

operation. For now the drone will only be in charge of tracking the ball during the match.

Input

You will receive a map grid made up of lines of ASCII characters of the football pitch. The map will be

between 10-16 lines tall, and 29-41 characters wide. The size will depend on the drone flying altitude.

The ball will be marked on the map with a "o" character. The map always ends with the character"#".

 (0,0)

 | | | | | | |
 |___ | ___|
 |_ | | | _|
 | | |. ,|. .| | |
 | | |) (|) (| | |
 |_| |' `|' `| |_|
 |___| | |___|
 | | o |
 |_____________|_____________|
 #

Output

Once the drone finds the ball in the map with a "o" character, the drone will report the coordinates

from the map. The upper left of the map will be (X=0, Y=0). The lower right of the map will be the

maximum values for X and Y.

13

Barcelona 2024

Example

Input

___	___				
_			_		
		. ,	. .		
) () (
_		' `	' `		_
___			___		
	o				
_____________	_____________				

Output

The ball is in: (18, 8)

Python

x=0

y=0

Read first line from input

line = input()

While line is different from end of input,

process the lines looking for the ball

while line != "#":

 # Find the ball in current line

 x = line.find('o')

 # When the ball is found the x-axis position is given from find method

 # and the y-axis matches with the number of line processed. Search for

 # the ball has finished

 if (x != -1):

 print("The ball is in: (" + str(x) + ", " + str(y) + ")")

 break

 # Move to next line

 line = input()

 # Increase the line counter

 y = y + 1

14

Barcelona 2024

8 Problem 42
4 points

Introduction

42, what a number! Do you know that...

• It is the sum of the first six positive even numbers. It is also the sum of the numbers on a pair of

dice.

• It is the atomic number of Molybdenum.

• The hypothetical efficiency of converting mass to energy, as per known formula E=mc2, by

having a given mass orbit a rotating black hole is 42%, the highest efficiency yet known to

modern physics.

• The Orion Nebula is the popular name for Messier object M42, a magnitude 5.0 diffuse nebula in

the constellation Orion.

• The ASCII code 42 is for the asterisk symbol, being a wildcard for everything.

• There are 42 US gallons in a barrel of oil.

• Level 42 is a popular English music band.

• "42" is one of the tracks on Coldplay's 2008 album Viva la Vida or Death and All His Friends.

• In Star Wars Episode IX: The Rise of Skywalker, the Festival of the Ancestors on Planet Pasaana

is held every 42 years.

• Last but not least, in "The Hitchhiker's Guide to the Galaxy" novel by Douglas Adams, the number

42 is the "Answer to the Ultimate Question of Life, the Universe, and Everything", calculated by

an enormous supercomputer named Deep Thought over a period of 7.5 million years.

Unfortunately, no one knows what the question is.

Given the importance of such number we need your help to detect how many times it appears in a

given message.

 To make things easier do not consider the case of decimal values with comma or point
like 42.5 or 42,5. Neither consider the case of having a prefix formed by zeros like 042.

15

Barcelona 2024

Input

A single line with the message to be analyzed.

Output

A single line with exactly the number of occurrences of 42.

Example 1

Input

My favourite number is 42. That is a 4 next to a 2 and nothing else. So, 420

is not valid. Just 42!

Output

2

Example 2

Input

See the Orion Nebula M42 through my telescope that my grandfather bought in

1942

Output

1

16

Barcelona 2024

Python

data = input()

length = len(data)

count = 0

index = 0

while True:

 anyDigitBefore = False

 anyDigitAfter = False

 index = data.find("42", index)

 # Is there any other 42 pending to review

 if index == -1:

 break

 # Check there are no any extra digits before 42

 if index > 0:

 if (data[index-1].isdigit()):

 anyDigitBefore = True

 # Check that there are no extra digits after 42

 if index+2 < length:

 if data[index+2].isdigit():

 anyDigitAfter = True

 if not(anyDigitBefore) and not(anyDigitAfter):

 count += 1

 # Move the start position past the last match

 index += 2

print(count)

17

Barcelona 2024

9 Galactic Bracket Balance Equilibrium
4 points

Introduction

In a distant future, humanity has colonized numerous planets and galaxies. With advanced

technology and interstellar travel, the cosmos has become the playground of explorers,

adventurers, and mathematicians alike.

One day, while navigating through a wormhole, your spaceship encounters a peculiar cosmic

phenomenon: a rift in space-time that distorts reality itself. Your ship's computer, equipped with

advanced AI, detects a mysterious signal emanating from this rift. Upon closer inspection, you

realize it's not a signal but a sequence of brackets – opening brackets '(' and closing brackets ')' –

arranged in a peculiar pattern.

As an intrepid astronaut-mathematician, you are tasked with deciphering the secrets hidden within

this cosmic anomaly. Your mission is to find the "Galactic Bracket Balance Equilibrium" point within

the string of brackets.

An equal point in this cosmic string is the index k where the number of opening brackets '(' occurring

before index k is precisely equal to the number of closing brackets ')' occurring from index k

onwards. The counting for index k will start always at 0.

Picture yourself in your spacesuit, floating near this rift in space-time, laser-scanning the brackets,

and running your AI algorithms to solve this otherworldly puzzle.

Write a program that takes the cosmic string as input and returns the index of the Galactic Bracket

Balance Equilibrium point.

Input

A cosmic string s that consists of only two characters: '(' and ')'.

Output

An integer representing the index of the Galactic Bracket Balance Equilibrium point followed by the

balanced and split bracket sequence.

18

Barcelona 2024

Example 1

Input

(()())

Output

3 (()-())

Example 2

Input

(((

Output

0 -(((

Example 3

Input

((()))

Output

3 (((-)))

Example 4

Input

())(()

Output

3 ())-(()

Example 5

Input

))

Output

2))-

19

Barcelona 2024

Python

brackets = input()

index = 0

open = 0

#print("Original: " + brackets)

Count open and close brackets

for i in range(len(brackets)):

 if brackets[i] == "(":

 open = open + 1

print(str(i+1) + " " + str(len(brackets)))

print(brackets[:i+1] + " " + brackets[i+1:])

 close = 0

 for j in range(i+1,len(brackets)):

 if brackets[j] == ")":

 close = close + 1

 if open == close:

 index = i + 1

 break

print (" Loop: " + str(i) + " current open: " + str(open) + " current

close: " + str(close) + " index: " + str(index))

if index != -1:

 print(str(index) + " " + brackets[:index] + "-" + brackets[index:])

else:

 print(index)

20

Barcelona 2024

10 Meeting Across Dune
4 points

Introduction

In the Dune universe, ornithopters are the primary mode of transportation on desert planet Arrakis.

It is basically an aircraft that flies by flapping its wings.

Two ornithopters set out from distinct cities with the intention of meeting each other somewhere

along the way, although not precisely at the midpoint due to their different speeds. Assuming a

straight-line path between the two cities, you will be provided with the distance between the cities in

kilometers and the speed values of the two ornithopters in kilometers per hour. Both ornithopters

follow a uniform linear motion, meaning that the acceleration is 0 throughout the motion. Your

objective is to determine the distance from the first city to their meeting point with a precision of

three decimal places.

Input

Three lines containing each line a single integer value referring to:

• Distance between cities in kilometers

• First ornithopter speed in kilometers per hour

• Second ornithopter speed in kilometers per hour

Output

The distance in kilometers from the first city and the rendezvous point with a precision of three

decimal places, that is the distance flown by first ornithopter before they meet.

Example 1

Input

30

1

2

Output

10.000

Example 2

Input

20

1

2

Output

6.667

Example 3

Input 3

20

2

1

Output

13.333

21

Barcelona 2024

Python

distance = int(input())

speedThopter1 = int(input())

speedThopter2 = int(input())

time = distance / (speedThopter1 + speedThopter2)

position = time * speedThopter1

print("{:.3f}".format(position))

22

Barcelona 2024

11 Nilats Athletes
5 points

Introduction

Nilats was once an impressive athlete that is now in charge of the Naissur Sports Federation. He

has been given the order to choose which athletes go to the Olympic Games and which do not.

In order to properly select the ones that will represent the country he has decided that the best

option is to create an algorithm. The only problem is that he is really bad at making decisions, so he

has implemented a rather particular way of choosing the athletes. Since all these incredible athletes

have been showing amazing results, he has created an evaluation system and a divider, so all the

athletes have been divided in groups of 8. Each of these athletes has a number (an integer, Nilats

likes absolutes) that determines how likely they are to succeed in the sport they participate.

Since he is incredibly bad at properly choosing the athletes, he is thinking about an algorithm that will

use those numbers that each athlete has. The logic is the following:

The algorithm should get the first number given to it and directly select that athlete, whatever

number that athlete has. Then it will compare the score of the second athlete and if that athlete has

a better score that the first one it will select him or her too. However, if the third one has a worse

score than the second one that athlete will not go to the Olympics and it is removed from the input.

If the fourth one has a greater score than the second one it will go to the Olympics. If not, it will be

removed too. If they have the same score the athlete is also removed.

Could you help him write it since he is also really bad at coding?

Input

Eight integers separated by a space.

Output

From one to eight integers separated by a space.

Example 1 Example2

Input Input

1 2 3 6 4 5 3 6 8 7 6 6 7 8 9 9

Output Output

1 2 3 6 8 9

23

Barcelona 2024

Python

def nilats_sort(input_list):

 sorted_list = [input_list[0]]

 max_so_far = input_list[0]

 for num in input_list[1:]:

 if num > max_so_far:

 sorted_list.append(num)

 max_so_far = num

 return sorted_list

user_input = input()

input_numbers = user_input.split()

if len(input_numbers) > 8:

 print("Please enter no more than 8 numbers.")

else:

 input_numbers = [int(num) for num in input_numbers]

 sorted_numbers = nilats_sort(input_numbers)

 sorted_numbers_str = ' '.join(map(str, sorted_numbers))

 print(sorted_numbers_str)

24

Barcelona 2024

12 Repeated Paints
5 points

Introduction

Welcome to 'The Color House,' a paint shop that features ten enchanting colors, each with a unique

ID ranging from 0 to 9. The paints are stored in drawers, but they are a bit messy and can contain a

variable number of paints including the possibility of repeated paint colors.

As a helpful worker at 'The Color House,' we need your magical coding skills to find out which paint

color is the most popular in our drawers. Our aim is to ensure that we have enough of the favorite

color in stock. Do not worry about possible ties because there will be always a single most popular

and repeated paint color.

For instance, in the case of having just two drawers, if the first drawer has paints with IDs 0, 1 and 2.

And the second drawer has paints with IDs 2, 2, 3, 4 and 5, then your program should reveal that the

color with ID 2 is the most popular with three occurrences, considering all the paints from the

drawers.

Unleash your coding magic and assist us in identifying the most repeated paint color at 'The Color

House,' navigating the variable number of each paint and the chance of repeated colors within each

drawer. And do not worry about possible ties because there will always be a unique most popular

and repeated color paint.

Input

A single line with a variable number of drawers, each separated by a space. The content of each

drawer is described by consecutive color paint ID’s.

Output

The most repeated color paint ID.

Example 1

Input

12 222100 34401 001

Output

0

Example 2

Input

431 44420 3210 33213 03211

Output

3

25

Barcelona 2024

Python

ids = input().split(' ')

cont = dict()

for id in ids:

 for i in id:

 if i in cont.keys():

 cont[i] +=1

 else:

 cont[i] = 1

max_key = max(cont, key=lambda key: cont[key])

print(max_key)

26

Barcelona 2024

13 Upside Down
6 points

Introduction

The Upside Down, in Stranger Things TV series, is a parallel dimension to real world. Much of it

remains as a mistery, but a recent scientic investigation discovered that obscure messages coming

from that dimension can be translated following the upside down rule.

Each message received is a singular word separated by a line break, or a line with the keyword

UPSIDE_DOWN. To be able to read a message scientists discovered that words must be stored in

the order them are received, that is, new words should be added to the end of the message.

However, when the keyword UPSIDE_DOWN appears, then the order of all the words must be

reversed. They also noticed that all messages end with the symbol #. By processing the message

this way, you end up a clear message.

Can you write a program to help the people of Hawkins understand messages from the Upside

Down?

Input

The input is a series of lines containing a single word that is part of the message alternatively will

appear the word UPSIDE_DOWN.

Output

The output is a single line with the translated message.

27

Barcelona 2024

Example 1

Input

of

Hawkins

UPSIDE_DOWN

town

small

UPSIDE_DOWN

in

UPSIDE_DOWN

the

to

Welcome

UPSIDE_DOWN

Indiana

Output

Welcome to the small town of Hawkins in Indiana

Python

upsideDown = False

wordList = []

finalMessage = ""

wordRead = input()

while wordRead != "#":

 if wordRead == "UPSIDE_DOWN":

 wordList.reverse()

 else:

 wordList.append(wordRead)

 wordRead = input()

for word in wordList:

 finalMessage += word + " "

print(finalMessage)

28

Barcelona 2024

14 Drawing Hydrocarbons
6 points

Introduction

Many chemistry lab experiments are focused on hydrocarbon alkanes. These are formed by

Carbon-to-Carbon single bonds (C–C) and exist as a continuous chain of Carbon atoms also bonded

to Hydrogen atoms.

Methane (CH4), ethane (C2H6), and propane (C3H8) are the first three of a series of compounds in

which any two members in a sequence differ by one Carbon atom and two Hydrogen atoms—

namely, a CH2 unit. The investigations in the lab will cover up to the first 12 members of hydrocarbon

alkanes.

Here is the internal structure of Butane, an alkane having four Carbon atoms (C4H10):

 H H H H
 | | | |
 H-C-C-C-C-H
 | | | |
 H H H H

Since you are going to perform several experiments, you do not want to spend too much time

drawing such structures in your notebook. So you decide to automate the drawings by coding a

program that, given the number of Carbon atoms, draws the corresponding hydrocarbon structure.

Remember that you only need to consider the first 12 hydrocarbons.

Input

The input is a positive integer representing the number of Carbon atoms in the hydrocarbon to

represent.

Output

The structure of the hydrocarbon given the number of C atoms and the corresponding bonds with

H atoms.

29

Barcelona 2024

Example 1

Input

1

Output

 H

 |

H-C-H

 |

 H

Example 2

Input

4

Output

 H H H H

 | | | |

H-C-C-C-C-H

 | | | |

 H H H H

30

Barcelona 2024

Python

carbon = int(input())

Basic case for one single carbon

line1 = " H"

line2 = " |"

line3 = "H-C-H"

Generic case for n carbons

if (carbon > 1):

 line1 = line1 + " H" * (carbon-1)

 line2 = line2 + " |" * (carbon-1)

 line3 = "H" + "-C" * carbon + "-H"

Printing the output

print(line1)

print(line2)

print(line3)

print(line2)

print(line1)

31

Barcelona 2024

15 Lost Letters Staircase
7 points

Introduction

Have you ever wondered what happens to letters when they are not used in a text? Such letters

become lost letters. Subsequently, they disappear, as they are no longer useful to a specific text,

and they cascade down the exit staircase. The lost letters staircase is constructed from these lost

letters, arranged in alphabetical order, one after the other. Each step consists of a letter followed by

an underscore (_) character, except for last step, which comprises just the very last letter. To add a

touch of humor to their disappearance, the letters are set alternatively in uppercase and lowercase,

always starting with a capital letter.

Would you code a program to build up the lost letters staircase for a given text?

Input

The input will be formed by several lines of text composed exclusively by English alphabet letters,

spaces and character # which marks the end of the text.

Output

The lost letters staircase formed by letters not used in the text alphabetically ordered. Just one

letter per step followed by an underscore (_) character, except for last step. If there are no lost

letters in the text just print out the message "There are no letters lost!".

Example 1

Input

It is a period of civil war Rebel spaceships

striking from a hidden base have won their

first victory against the evil Galactic

Empire#

Output

J_

 q_

 U_

 x_

 Z

32

Barcelona 2024

Example 2

Input

Sphinx of lack quartz judge my vow#

Output

B

Example 3

Input

The quick brown fox jumps

over the lazy dog#

Output

There are no letters lost!

33

Barcelona 2024

Python

alphabet= []

for i in range(26):

 alphabet.append(0)

end = False

Build frequency table

while not end:

 # Read line from standard output

 line = input()

 for letter in line:

 if letter == " ":

 continue

 elif letter != "#":

 letter = letter.upper()

 alphabet[ord(letter) - ord('A')] += 1

 else:

 end = True

 break

Build staircase with letters that have zero frequency

result = ""

line = 0

nextCapital = True

staircase = []

for i in range(26):

 if alphabet[i] == 0:

 letter = chr(i+ord('A'))

 if not nextCapital:

 letter = letter.lower()

 staircase.append(line * " " + letter + "_")

 nextCapital = not nextCapital

 line += 1

Print result. Take into account the case of last step

steps = len(staircase)

if (steps > 0):

 for i in range(steps-1):

 print(staircase[i])

 lastStep = staircase[steps-1][:-1]

 print(lastStep)

else:

 print("There are no letters lost!")

34

Barcelona 2024

16 Palindrome Parade
7 points

Introduction

Welcome to the Palindrome Parade, where words of all shapes and sizes march together,

celebrating their symmetrical beauty! Your task is to organize the parade by creating a special

merger for this grand event.

Given two lists, each filled with palindromic and non-palindromic words, the merging process is

unique: we want to merge the lists based on whether each word is a palindrome or not. Palindromic

words lead the parade, followed by non-palindromic words. So, keeping the original order from the

lists, the parade will move as: first palindromic words from first list, followed by palindromic words

from second list, then non-palindromic words from first list and finally non-palindromic words from

second list.

Some words can appear in both lists. So, be careful that they do not appear repeated along the

merged parade. Only the first appearance of a word is allowed.

Can you write a program to organize the Palindrome Parade?

Input

The input is composed by several lines: the first line contains the number of elements of first list.

Followed by the list of words of first list. Next line will contain the number of elements of second list.

Finally, there is the list of words from second list.

Output

The output is composed by several lines with a single word per line which considers the original

order of appearance. First palindromic words from first list, followed by palindromic words from

second list, then non-palindromic words from first list and finally non-palindromic words from

second list.

35

Barcelona 2024

Example 1

Input

6

radar

apple

deed

banana

level

civic

8

orange

radar

noon

kayak

grape

table

hello

grape

Output

radar

deed

level

civic

noon

kayak

apple

banana

orange

grape

table

hello

36

Barcelona 2024

Python

def isPalindromic(word):

 if word == word[::-1]:

 return True

 else:

 return False

def addToList(list, paradeList, palindromic):

 for i in list:

 if i not in paradeList:

 if isPalindromic(i) == palindromic:

 paradeList.append(i)

numList1 = int(input())

list1 = []

for i in range(numList1):

 list1.append(input())

numList2 = int(input())

list2 = []

for i in range(numList2):

 list2.append(input())

paradeList = []

addToList(list1, paradeList, True)

addToList(list2, paradeList, True)

addToList(list1, paradeList, False)

addToList(list2, paradeList, False)

for i in paradeList:

 print(i)

37

Barcelona 2024

17 Mars Rover
8 points

Introduction

A new Mars rover is being developed to travel autonomously on the surface of Mars. To test its

navigation, you prepared a N x N board where N represents the number of cells. The rover must

move around all the cells. The navigation algorithm of the Mars rover will always start the move at

cell (1,1). First, it moves up to the next cell, then a cell to the right, then a cell downward. At this point, it

then moves one cell to the right, next two cells upward, and continues the move two cells to the left.

This pattern will continue until the whole board is discovered. To keep things simple just assume a

constant speed of one grid per second.

Let's see a graphical example with a 5 x 5 board:

Given this navigation strategy it is easy to predict the time spent to arrive at the target position (x,y).

When rover is at (2,3), the rover took 8 seconds. And when it was at (5,4), the rover was at the 20th

second of the movement.

Your task will be to compute the time spent to reach a given position (x,y). Please assume that N

could be as large as 4096.

Input

The input is formed by two lines reporting the position in the board:

First line has a single positive integer for the x position.

Second line has a single positive integer for the y position.

38

Barcelona 2024

Output

The output is the number of seconds to reach the given input position.

Example 1

Input

2

3

Output

8

Example 2

Input

5

4

Output

20

39

Barcelona 2024

Python

import math

x = int(input())

y = int(input())

res = 0

squareSize = 0

Find out the side of the square that includes the position (x,y)

considering the biggest of the two dimensions.

Then find out value corresponding to the cell

if (x > y):

 if (x%2 == 0):

 res = x**2 - (y - 1)

 else:

 res = (x-1)**2 + y

else:

 if (y%2 == 0):

 res = (y-1)**2 + x

 else:

 res = y**2 - (x - 1)

print(res)

40

Barcelona 2024

18 The Kiss Precise
8 points

Introduction

Four circles to the kissing come.

The smaller are the benter.

The bend is just the inverse of

The distance form the center.

Though their intrigue left Euclid dumb

There’s now no need for rule of thumb.

Since zero bend’s a dead straight line

And concave bends have minus sign,

The sum of the squares of all four bends

Is half the square of their sum.

In 1936 the mathematician Frederick Soddy published in Nature magazine this poem summarizing

Descartes circle theorem. This theorem is about determination of a circle touching three mutually

tangent circles (also called the kissing circles problem). There are two solutions: a small circle

surrounded by the three original circles, and a large circle surrounding the original three. See them

in red in the picture.

But if you prefer a math language description here you have the formula

𝟐(𝒔𝟏
𝟐 + 𝒔𝟐

𝟐 + 𝒔𝟑
𝟐

 + 𝒔𝟒
𝟐) = (𝒔𝟏 + 𝒔𝟐 + 𝒔𝟑 + 𝒔𝟒)𝟐

having that

𝒔𝒊 =
𝟏

𝒓𝒊

where 𝒓𝒊 is the radius of circle i.

41

Barcelona 2024

This can be solved as a quadratic equation with two solutions. One of these solutions is positive

(corresponds to inner circle), and the other is either positive or negative (corresponds to outer

circle); if the second solution is negative, it must represent a circle that is internally tangent to the

other three.

Can you write a program to find out the radios of inner and outer circles?

Input

The input is composed by three lines:

The first line contains the radius of the first circle.

The second line contains the radius of the second circle.

The third line contains the radius of the third circle.

Output

The output is composed by two lines:

The first line contains the radius of the inner circle with 5 decimal places.

The second line contains the radius of the outer circle with 5 decimal places.

Example

Input

1

2

5

Output

0.28663

-11.25437

42

Barcelona 2024

C++

/* Given the formula for finding the radii of the Soddy circles (s4 = 1/r4)

given that si = 1/ri corresponding to radius r1, r2 and r3 of other three

circles.

 *

 * 2 * (s1^2 + s2^2 + s3^2 + s4^2) = (s1 + s2 + s3 + s4)^2

 *

 * Let's assume a = s1^2 + s2^2 + s3^2 and b = s1 + s2 + s3 to simplify so we

have

 *

 * 2 * (a + s4^2) = (b + s4)^2

 *

 * 2a + 2s4^2 = s4^2 + 2bs4 + b^2

 *

 * s4^2 - 2bs4 + 2a - b^2 = 0 (To be solved using a quadratic equation formula)

 *

 * s4 = 2b +- sqrt ((2b)^2 - 4(2a-b^2)) / 2

 */

#include<iostream>

#include<iomanip>

#include<math.h>

using namespace std;

int main() {

 int r1, r2, r3 ;

 double s1, s2, s3 ;

 double a, b;

 double s4a, s4b, r4a, r4b;

 // Read the three radius from input

 cin >> r1;

 cin >> r2;

 cin >> r3;

 s1 = 1 / (double)r1;

 s2 = 1 / (double)r2;

 s3 = 1 / (double)r3;

 a = pow(s1,2) + pow(s2,2) + pow(s3,2);

 b = s1 + s2 + s3;

 s4a = (2*b + sqrt(pow(2*b,2) - 4*(2*a-pow(b,2))))/2;

 s4b = (2*b - sqrt(pow(2*b,2) - 4*(2*a-pow(b,2))))/2;

43

Barcelona 2024

 r4a = 1 / s4a;

 r4b = 1 / s4b;

 cout << fixed << setprecision(5) << r4a << endl;

 cout << fixed << setprecision(5) << r4b << endl;

}

44

Barcelona 2024

19 Say That Again?
9 points

Introduction

Al1-C3 and B-0b are two friendly robots that wish to establish a communication protocol with some

redundancy to avoid miscommunication. As they are robots, they do not communicate by words but

rather with bytes (8-bit numbers) represented by integer numbers from 0 to 255. For their protocol,

they came up with the simple idea to repeat each of the bytes in the message three times, so that

the received byte is formed by the most common bit at each of the 8 positions within the byte.

For example, if the bytes are 24, 117 and 178, then the resulting byte is 48:

n b7 b6 b5 b4 b3 b2 b1 b0

24 0 0 0 1 1 0 0 0

117 0 1 1 1 0 1 0 1

178 1 0 1 1 0 0 1 0

48 0 0 1 1 0 0 0 0

Please, help Al1-C3 and B-0b implement the program that translates the repeated bytes into the final

byte on the receiving end.

Input

Several lines, each containing a triplet of bytes (separated by a single space), except the last line that

contains only the character '#'. Bytes are represented by an integer number between 0 and 255

(both inclusive).

Output

One line for each triplet of bytes with the final byte according to the protocol described above. Bytes

are represented by an integer number between 0 and 255 (both inclusive).

45

Barcelona 2024

Example 1

Input

24 117 178

3 3 0

1 2 3

Output

48

3

3

Example 2

Input

4 4 2

0 0 0

255 127 128

4 2 8

Output

4

0

255

0

Python

while True:

 line = input()

 if line == "#":

 break

 x, y, z = line.split()

 x = int(x)

 y = int(y)

 z = int(z)

 print((x&y) | (y&z) | (z&x))

46

Barcelona 2024

20 Misfit Columns
9 points

Introduction

Calling all Number Detectives! We need your help to uncover the misfit columns in our mysterious

3x5 number matrix. Your program must identify those columns where the elements have different

values. It's like a game of hide-and-seek, but with numbers! Get ready to dive into the world of matrix

and expose the columns that have all their values different. In the event that a matrix doesn’t have

such columns, print out a single 0.

Input

The input is a 3x5 matrix. It is composed by three lines. Each line will have five positive integers

separated by a space.

Output

The output will display the columns whose elements have different values in same order than the

original matrix.

Example 1

Input

1 2 2 5 9

3 0 2 5 1

1 7 2 3 0

Output

2 9

0 1

7 0

Example 2

Input

1 2 3 4 5

6 7 8 9 1

1 2 3 4 5

Output

0

Example 3

Input

10 21 31 14 15

60 71 89 29 1

10 21 30 34 15

Output

31 14

89 29

30 34

47

Barcelona 2024

Python

Initialize an empty matrix

matrix = []

Read matrix from standard input

for i in range(3):

 row = input().split() # Assuming elements are separated by spaces

 # Convert elements to integers if needed

 row = [int(x) for x in row]

 matrix.append(row)

print matrix read

for i in range(3):

print(matrix[i])

mischievous_columns = []

for col in range(5): # Iterate through each column

 column_values = set() # To store unique values in the column

 for row in range(3): # Iterate through each row in the column

 column_values.add(matrix[row][col])

 # print(column_values)

 # If the number of unique values equals the number of rows, all values are

different

 if len(column_values) == 3:

 mischievous_columns.append(col)

Print just 0 if there are no mischievous columns

if len(mischievous_columns) == 0:

 print("0")

else:

 # Construct a list of lines containing the mischievous columns

 output = []

 for j in range(3):

 row = ""

 for i in mischievous_columns:

 if row == "":

 row = str(matrix[j][i])

 else:

 row = row + " " + str(matrix[j][i])

 output.append(row)

 # Print the mischievous columns line per line

 for line in output:

 print(line)

48

Barcelona 2024

21 Permutation Ciphering
9 points

Introduction

Permutation cyphering is an example of symmetric cryptography, a cryptographic approach where

both the sender and receiver collaborate using a common encryption key. Such key is an integer of

n digits (n ≤ 9) where each digit must be between 1 and n and appear only once.

For instance, let's consider the 5-digit key '25413' to encrypt the Mandalorian message 'This is the

way!!'. Since the key size is 5, the message is divided into four segments, each with 5 characters. In

the case where the last segment's size is smaller than the key size, padding characters

(represented by '*') are added.

During the encryption process, the characters are arranged according to the key’s digits

corresponding to their own segment. To clarify, let's look at an example: the second character from

the original message becomes the first character in the encrypted segment, the fifth character

takes the second position, and so on. This pattern is applied to each segment in the process of

rearranging characters.

Can you write a simple program that, given a certain key, is able to encrypt a message following the

permutation cyphering?

Input

The input is composed by two lines where the first line just contains the ciphering key and the second

line has the message to encrypt.

Output

The output is single line with the crypted message.

Example

Input

321

The force is with us!!

Output

ehTof ecrsi iw ht!su**!

49

Barcelona 2024

Python

key = input()

message = input()

cryptedMessage = ""

index = []

Fill the message with padding if needed.

Beware of a special case when key is just 1.

if len(key) > 1 and (len(message) % len(key)) > 0:

 padding = len(key) - (len(message) % len(key))

 message = message + padding * "*"

Create the index vector to store the cypher order

for i in key:

 index.append(int(i)-1)

Construct the cyphered message by accessing to the original message following

the

cypher sequence.

for i in range(len(message)):

 cryptedMessage = cryptedMessage + message[index[i%len(key)] + i//len(key) *

len(key)]

print(cryptedMessage)

50

Barcelona 2024

22 Chess Board
11 points

Introduction

After the last World Chess Championship, a fever to play chess has risen around the globe resulting

in a high demand of chess boards.

It’s a big deal to build chess boards nowadays. It’s even better if you allow people to customize their

boards. For example, instead of having solid black squares, you might offer the chance to print any

pattern like a letter, a number or even a symbol. Another feature could be to allow customers to

define the size of the squares in their chess board. Before starting a massive production of chess

boards, your company wants to ensure that the software is ready to support the printing of

customized patterns. Can you write a program that prints a chess board given a pattern defined by

a specific character and square size?

Input

A line with a single character that represents the pattern to use,

A line with a single positive number (1 < size < 15) that provides the size of each square.

Output

Print the requested chess board.

51

Barcelona 2024

Example 1

Input

1

Output

| |#| |#| |#| |#|

|#| |#| |#| |#| |

| |#| |#| |#| |#|

|#| |#| |#| |#| |

| |#| |#| |#| |#|

|#| |#| |#| |#| |

| |#| |#| |#| |#|

|#| |#| |#| |#| |

Example 2

Input

X

3

Output

	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX

XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	

	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX

XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	

	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX

XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	

	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX
	XXX		XXX		XXX		XXX

XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	
XXX		XXX		XXX		XXX	

52

Barcelona 2024

C++

#include <iostream>

void printRow(bool beginWithEmpty, char symbol, int size, char verticalLine)

{

 for (int j = 0; j<4; j++)

 {

 char first = ' ';

 char second = symbol;

 if (!beginWithEmpty)

 {

 first = symbol;

 second = ' ';

 }

 std::cout << std::string(size, first) << verticalLine

<< std::string(size, second) << verticalLine;

 }

}

int main()

{

 char symbol;

 int size;

 char horizontalLine = '-';

 char verticalLine = '|';

 std::cin >> symbol;

 std::cin >> size;

 std::cout << std::string(((size+1)*8)+1, horizontalLine) << std::endl;

 // Repeat per row (8)

 for (int i = 0; i<8; i++)

 {

 for (int j = 0; j<size; j++)

 {

 std::cout << verticalLine;

 if (i % 2 == 0)

 {

 printRow(true, symbol, size,verticalLine);

 }

 else

 {

 printRow(false, symbol, size,verticalLine);

53

Barcelona 2024

 }

 std::cout << std::endl;

 }

 std::cout << std::string(((size+1)*8)+1, horizontalLine) << std::endl;

 }

}

54

Barcelona 2024

23
Rule 90
11 points

Introduction

Cellular automata (CA) are mathematical models for systems in which simple components (known

as cells) act together following certain rules to produce complex behaviour. They can be used to

model biological processes, simulate chemical reactions or study physical phenomena.

The simple one-dimensional CA consists of a single row of cells, where each cell can be in one of two

possible states (0 or 1), plus a set of rules for evolving the whole CA state. It can be graphically

represented as a sequence of numbers, where each number represents a cell value.

To evolve the current state of the CA, the rules act over the cell neighbourhood, that is, the cells

placed at the left and right of a given cell. Rule 90 states that each cell's new value is the exclusive

or of the two neighbouring (left and right) cell values. So, the next state of this particular CA follows

this transition table:

Current pattern 000 001 010 011 100 101 110 111

New state for center cell 0 1 0 1 1 0 1 0

It is known as rule 90 because concatenating the new states for center cell of this table results into

the binary number 01011010 that equals to decimal number 90.

To make things funnier an exception has been introduced to this rule. For the left-most and right-

most cells, just copy the value of the next or previous cell respectively. That is, given the CA state

00110, the next state will be 01111.

The size of our CA is 64 cells and when representing the state 0s must be replaced by "-" and 1s

replaced by "*".

Just one final word about complexity. Compare the output of the examples and notice how example

1 ends up forming Sierpinski fractal while example 2 looks like a random form. The output pattern

depends critically on our initial conditions. Regular initial conditions provide regular output, but

random initial conditions create somehow chaotic output. Hello Complexity World!

Can you write a program that evolves a given cellular automata in a row of a certain number of

steps?

Input

The input will be a pair of lines.

55

Barcelona 2024

The first line contains the original state of the cellular automata represented by 64 digits.

The second line represents the number of steps the cellular automata will execute reporting its

output.

Output

A printed line representing the state of the cellular automata for each of the steps executed.

Example 1

Input

0000000000000000000000000000000100000000000000000000000000000000

32

Output

-------------------------------*--------------------------------

------------------------------*-*-------------------------------

-----------------------------*---*------------------------------

----------------------------*-*-*-*-----------------------------

---------------------------*-------*----------------------------

--------------------------*-*-----*-*---------------------------

-------------------------*---*---*---*--------------------------

------------------------*-*-*-*-*-*-*-*-------------------------

-----------------------*---------------*------------------------

----------------------*-*-------------*-*-----------------------

---------------------*---*-----------*---*----------------------

--------------------*-*-*-*---------*-*-*-*---------------------

-------------------*-------*-------*-------*--------------------

------------------*-*-----*-*-----*-*-----*-*-------------------

-----------------*---*---*---*---*---*---*---*------------------

----------------*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-----------------

---------------*-------------------------------*----------------

--------------*-*-----------------------------*-*---------------

-------------*---*---------------------------*---*--------------

------------*-*-*-*-------------------------*-*-*-*-------------

-----------*-------*-----------------------*-------*------------

----------*-*-----*-*---------------------*-*-----*-*-----------

---------*---*---*---*-------------------*---*---*---*----------

--------*-*-*-*-*-*-*-*-----------------*-*-*-*-*-*-*-*---------

-------*---------------*---------------*---------------*--------

56

Barcelona 2024

------*-*-------------*-*-------------*-*-------------*-*-------

-----*---*-----------*---*-----------*---*-----------*---*------

----*-*-*-*---------*-*-*-*---------*-*-*-*---------*-*-*-*-----

---*-------*-------*-------*-------*-------*-------*-------*----

--*-*-----*-*-----*-*-----*-*-----*-*-----*-*-----*-*-----*-*---

-*---*---*---*---*---*---*---*---*---*---*---*---*---*---*---*--

*-

Example 2

Input

1010111110000111111111111110111111111110111111111111101110110101

32

Output

--*****----**************-***********-*************-***-**-*-*

----*---**--**------------*-*---------*-*-----------*-*-*-**----

---*-*-********----------*---*-------*---*---------*------***---

--*----*------**--------*-*-*-*-----*-*-*-*-------*-*----**-**--

-*-*--*-*----****------*-------*---*-------*-----*---*--***-***-

*---**---*--**--**----*-*-----*-*-*-*-----*-*---*-*-*-***-*-*-**

-*-****-*-*********--*---*---*-------*---*---*-*------*-*-----**

----*---*-------***-*-*-*-*-*-----*-*-*-*-*---*----*---*---***

-**-**-*-*-*-----**-*----------*---*---------*-*-*--*-*-*-*-**-*

-**------*-----*--------*-*-*-*-------*-----**--------**--

--***----*-*-**-***-*------*-------*-----*-*---****------****-

----*-**--*----**-*-*--*----*-*-----*-*---*---*-**--**----**--**

---*--****-*--***----**-*--*---*---*---*-*-*-*--*******--*******

--*-***--*--***-**--***--**-*-*-*-*-*-*-------***-----****-----*

-*--*-***-***-*-*****-*****------------*-----**-**---**--**---*-

*-**--*-*-*-*---*---*-*---**----------*-*---***-***-********-*-*

--****-------*-*-*-*---*-****--------*---*-**-*-*-*-*------*----

-**--**-----*-------*-*--*--**------*-*-*--**--------*----*-*---

********---*-*-----*---**-*****----*-----*****------*-*--*---*--

*------**-*---*---*-*-***-*---**--*-*---**---**----*---**-*-*-*-

-*----***--*-*-*-*----*-*--*-*****---*-****-****--*-*-***------*

---**-***-------*--*---**--*---**-*--*--*-*--***----*-**----*-

57

Barcelona 2024

---****-*-**-----*-**-*-*****-*-***--**-**---***-**--*--***--*-*

--**--*---***---*--**---*---*---*-*****-***-**-*-****-***-***---

-*****-*-**-**-*-*****-*-*-*-*-*--*---*-*-*-**---*--*-*-*-*-**--

---*----**---*---*----------**-*-*------***-*-**--------***-

-*-*--***-*-*-*-*--------***----*----**-*---***------**-**

------*-*-*-*--------*------**-**--*-*--***--*-**-**----***-**

---*---*-------*------*-*----***-****---***-***--**-***--**-*-**

--*-*-*-*-----*-*----*---*--**-*-*--**-**-*-*-*****-*-*****---**

-*-------*---*---*--*-*-*-****----****-**-----*---*---*---**-***

------*-*-*-*-*-**------*--**--**--*-***---*-*-*-*-*-*-***-*-*

Python

##############################

Cellular automata function #

##############################

def CellularAutomata(initialState, numSteps):

 # build cellular automata from initialState

 initialState_map = map(int, initialState)

 ca = list(initialState_map)

 # new cellular values

 ca_new = ca[:]

 # dictionary mapping the cell value to characters '-' and '*'

 translateDic = {0:'-', 1:'*'}

 # print out initial step

 print(''.join([translateDic[e] for e in ca_new]))

 # peform next steps

 step = 1

 while(step < numSteps):

 ca_new = []

 # loop through 0 to 63 and store the current cell status in ca_new list

 for i in range(0,64):

 # inside cells - check the neighbor cell state

 if i > 0 and i < 63:

 if ca[i-1] == ca[i+1]:

 ca_new.append(0)

 else:

 ca_new.append(1)

58

Barcelona 2024

 # left-most cell : check the second cell

 elif(i == 0):

 if ca[1] == 1:

 ca_new.append(1)

 else:

 ca_new.append(0)

 # right-most cell : check the second to the last cell

 elif(i == 63):

 if ca[62] == 1:

 ca_new.append(1)

 else:

 ca_new.append(0)

 # print out current cell state

 print(''.join([translateDic[e] for e in ca_new]))

 # update cell list

 ca = ca_new[:]

 # increase step count

 step += 1

################

Main program #

################

read initial state represented by 64 consecutive cells in a single line

initialState = input()

read number of steps to execute

numSteps = int(input())

run the cellular automata with input paramaters

CellularAutomata(initialState, numSteps)

59

Barcelona 2024

24 Mixing Hats
12 points

Introduction

At a fancy party, guests arrive and check their hats in the cloak room. Starting with a single capital

letter "A" and following alphabetical order, the cloak room attendant gives a ticket with that letter to

the guest and attaches a label with the same letter to the hat. Once the party starts, the attendant

wants to have some fun, so he starts exchanging the hat labels. By the time guests are ready to

leave, none of them has their original hat back.

In case of having three guests at the party, when the hats arrive to the cloak room, the hats will

receive labels A, B and C. To make it funnier, the attendant makes sure that no guest has their original

hat. So he has 2 different options when mixing things up, he can mix them in a B, C, A manner or a C,

A, B manner. If he did it in any other way, like C, B, A, guest B would have his original hat, which the

attendant wants to avoid.

Can you write a program to calculate all the possible combinations of labels that ensures that

nobody gets their hat back?

Input

The input is the number of guests attending the party: a number between 2 and 7, both included.

Output

The output is the list of possible hat labels combinations ordered alphabetically.

60

Barcelona 2024

Example

Input

3

Output

BCA

CAB

Python

def permutation(lst):

 if len(lst) == 0:

 return []

 if len(lst) == 1:

 return [lst]

 l = [] # empty list that will store current permutation

 for i in range(len(lst)):

 m = lst[i]

 # Extract lst[i] or m from the list. remainderLst is remaining list

 remainderLst = lst[:i] + lst[i+1:]

 # Generating all permutations where m is first element

 for p in permutation(remainderLst):

 l.append([m] + p)

 return l

def anyMatching(a, b):

 res = False

 for i in range(0,len(a)):

 if a[i] == b[i]:

 return True

 return res

2 <= number <= 7

number = int(input())

list of identifiers for hats

hats = []

Generate the hats sequence received in order

for i in range(0,number):

61

Barcelona 2024

 hats = hats + [chr(i+65)]

#print(hats)

All the permutations without repetitions are generated

then the permutations that have a match against original

order are discarded.

for p in permutation(hats):

 if not anyMatching(hats, p):

 print(''.join(map(str, p)))

62

Barcelona 2024

25 Gaussian Blur
13 points

Introduction

For sure, you've seen many times in photos, the typical effects where the out-of-focus parts are

softened or even the whole image seems like viewed through a translucent screen.

Some of these effects are accomplished using a Gaussian Blur which is the application of a

mathematical function to an image in order to blur it. A Gaussian curve or Gaussian function has the

following shape:

As you may know an image is represented as a matrix of pixel values.

63

Barcelona 2024

So let's consider a simple way to apply a Gaussian Blur to a given image. To make things easier

assume that only some points along the Gaussian curve are considered. These points, also called

“weights”, show how much softness we want at that place. Higher numbers mean more softness.

The selected points are collected in a one-dimensional weight table like this:

[0.06136 0.24477 0.38774 0.24477 0.06136]

This is also called Gauss kernel window. Then, placing this window centered on a certain pixel, we

would sample every other pixel in the window using the corresponding weight, and the sum of all

them would be the blurred value of the pixel in the center:

The operation to be done consists of a first horizontal blur on the image, followed by another vertical

blur on the resulting image:

So, for every pixel we'll put the one-dimensional window horizontally around it and compute the

blurred value using the weights in the window. Then, in the resulting image, for each pixel we'll put the

one-dimensional window vertically around it and compute the blurred value using the weights. We

can repeat this process any number of times if we want a more blurred result. Corner pixels and

pixels situated along the sides of the image are missing some neighboring pixels. When placing the

window around these pixels, assume that the value of missing neighbors is '0'.

64

Barcelona 2024

Write a program that applies the Gaussian Blur a specified number of times to a given image using

previous one-dimensional window weight table.

Input

First line, a positive number indicating how many times we want to blur the image. Then, a line with

the size of the image separated by a white space (rows columns).

And finally, the image pixel values.

Output

The output is the pixel values of the blurred image, rounded to the nearest integer.

Example

Input

4

5 5

73 54 80 45 73

37 63 54 54 18

97 37 80 80 97

27 45 97 18 18

45 45 18 45 97

Output

10 16 18 16 10

16 25 28 25 16

18 28 32 28 18

15 24 27 24 15

9 15 17 15 10

65

Barcelona 2024

Python

def main():

 WEIGHTS = [0.06136, 0.24477, 0.38774, 0.24477, 0.06136]

 #INPUT

 n_times_blur = int(input())

 n_rows, n_columns = input().split()

 n_rows, n_columns = int(n_rows), int(n_columns)

 image = []

 for i in range(n_rows):

 row = list(map(int, input().split()))

 image.append(row)

 #FUNCTIONS

 def apply_weights(matrix, weights):

 n_weights = len(weights)

 n_zeros = n_weights//2

 zeros = [0]*n_zeros

 new_matrix = []

 for row in matrix:

 row_with_zeros = zeros + row + zeros

 new_row = []

 for i in range(len(matrix[0])):

 new_value = sum([row_with_zeros[i+k] * weights[k] for k in

range(n_weights)])

 new_row.append(new_value)

 new_matrix.append(new_row)

 return new_matrix

 def transpose(matrix):

 result = []

 for i in range(len(matrix[0])):

 new_row = []

 for row in matrix:

 new_row.append(row[i])

 result.append(new_row)

 return result

 def round_matrix(matrix):

 result = []

 for row in matrix:

 new_row = [round(x) for x in row]

 result.append(new_row)

66

Barcelona 2024

 return result

 def apply_gaussian_blur(image, n_times):

 new_image = image.copy()

 for i in range(n_times):

 new_image = apply_weights(new_image, WEIGHTS)

 new_image = transpose(new_image)

 new_image = apply_weights(new_image, WEIGHTS)

 new_image = transpose(new_image)

 new_image = round_matrix(new_image)

 return new_image

 #OUTPUT

 blurred_image = apply_gaussian_blur(image, n_times_blur)

 for row in blurred_image:

 print(*row)

if __name__ == "__main__":

 main()

67

Barcelona 2024

26 Sudoku Solver
15 points

Introduction

As an aspiring programmer and sudoku fan, you have decided to become the number one sudoku

completionist. You want to create a program to solve all the sudokus of the newspaper you buy

every day.

Before starting, you write down the rules needed to complete a sudoku:

- You can put a number between 1-9 in each slot.

- No number can be repeated in any given row.

- No number can be repeated in any given column.

- No number can be repeated in any given 3x3 "small" square.

Now that you are ready, you will need to write a program that can solve any (solvable) sudoku to

become the best.

IMPORTANT: In case of a sudoku that have multiple solutions, any valid solution is accepted.

Input

A sudoku table with the initial numbers needed to complete it. The missing numbers will be

represented with a blank space, even if they are at the end of the line.

Output

The completed sudoku table. In case of multiple sudoku solutions, only one completed table.

68

Barcelona 2024

Example 1

Input

 1 |2 |3 4

2 5| 6 | 7

 8| 9 |

---+---+---

3 |12 | 8

6 |8 7| 2

1 | 34| 5

---+---+---

 | 8 |9

 2 | 4 |5 6

7 4| 5| 8

Output

916|278|354

235|461|879

478|593|621

---+---+---

357|126|498

649|857|132

182|934|765

---+---+---

561|382|947

823|749|516

794|615|283

Example 2

Input

 3|685|47

5 | 4|162

7 | 19|538

---+---+---

 |9 |

39 | 1| 2

 65| 3| 1

---+---+---

4 | 6 |9 3

9 |342| 87

 |1 | 4

Output

123|685|479

589|734|162

746|219|538

---+---+---

817|926|345

394|851|726

265|473|891

---+---+---

472|568|913

951|342|687

638|197|254

69

Barcelona 2024

Python

def createInitialSudoku():

 initialSudoku = [

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0]

]

 posRow = 0

 for i in range(11):

 rowRead = input()

 if rowRead[0] != '-':

 posCol = 0

 for j in range(11):

 if rowRead[j] != '|':

 if rowRead[j] != ' ':

 initialSudoku[posRow][posCol] = int(rowRead[j])

 posCol += 1

 posRow += 1

 return initialSudoku

def isLegal(sudokuMatrix, row, column, num):

 #We check if the number is already in this row

 for check in range(9):

 if sudokuMatrix[row][check] == num:

 return False

 #We check if the number is already in this column

 for check in range(9):

 if sudokuMatrix[check][column] == num:

 return False

 #We check if the number is already in the box

 boxStartRow = row - row % 3

 boxStartCol = column - column % 3

70

Barcelona 2024

 for i in range(boxStartRow, boxStartRow + 3):

 for j in range(boxStartCol, boxStartCol + 3):

 if sudokuMatrix[i][j] == num:

 return False

 return True

def solveSudoku(sudokuMatrix, row, column):

 if row == 8 and column == 9:

 return True

 if column == 9:

 row += 1

 column = 0

 #We check if the curent tile does contain a number

 if sudokuMatrix[row][column] != 0:

 return solveSudoku(sudokuMatrix, row, column+1)

 #We try all possible numbers

 for num in range(1, 10):

 if isLegal(sudokuMatrix, row, column, num):

 #If the number is legal, we put into the sudoku

 sudokuMatrix[row][column] = num

 if solveSudoku(sudokuMatrix, row, column+1):

 return True

 sudokuMatrix[row][column] = 0

 return False

def printSudoku(sudokuMatrix):

 for i in range(9):

 if i == 3 or i == 6:

 print("---+---+---")

 for j in range(9):

 if j == 3 or j == 6:

 print("|", end="")

 print(sudokuMatrix[i][j], end="")

 print("")

########################### MAIN FUNCTION ##############################

sudokuMatrix = createInitialSudoku()

if solveSudoku(sudokuMatrix, 0, 0):

 printSudoku(sudokuMatrix)

else:

 print("There is no solution")

71

Barcelona 2024

27 Finding Achilles
17 points

Introduction

For sure you known of Achilles, one of the greatest Greek warriors in the Trojan war. Despite his

mighty power he had a weakness at his heel. Did you know that there are also numbers named after

him? Just like Achilles, these numbers are powerful but imperfect.

Usually a positive integer is a powerful number if, when doing its factorization, every prime factor

appears at least squared in the factorization. However, Achilles numbers have a weakness: that is

the only way they can be represented. They cannot be represented as mk, where m and k are

positive integers greater than 1. If a powerful number has both representations, it will not be an

Achilles number.

Let's see some examples:

- 50 is not a powerful number because one of its prime factors is not squared: 2 · 52

- 784 is a powerful number as its prime factors show 24 · 72, but it is not an Achilles number because

it can be represented as a power in the form of 282.

- 200 is a powerful number as its prime factors are 23 · 52, and it is an Achilles number since it’s not

possible to be represented as mk.

Can you code a program to detect whether a given positive number is or is not an Achilles number?

Example 1

Input

2

Output

2 is NOT an Achilles number

Example 2

Input

200

Output

200 is an Achilles number

72

Barcelona 2024

C++

#include <iostream>

#include <vector>

#include <math.h>

using namespace std;

int main() {

 int number;

 cin >> number;

 bool isAchilles = true;

 vector<int> factors;

 if(number == 1) {

 isAchilles = false;

 }

 int aux = number;

 while(aux > 1) {

 for(int i = 2; i <= aux; i++) {

 if(aux % i == 0) {

 aux = aux / i;

 factors.push_back(i);

 break;

 }

 }

 }

 int size = factors.size();

 int factorAux;

 bool found;

 for(int j = 0; j < size; j++){

 found = false;

 factorAux = factors[j];

 for(int k = 0; k < size; k++) {

 if(j != k) {

 if(factorAux == factors[k]) {

 found = true;

 }

 }

 }

 if(!found) {

 isAchilles = false;

73

Barcelona 2024

 }

 }

 double auxResult;

 for(int l = 1; l < number; l++){

 for(int m = 1; m < number; m++) {

 auxResult = pow(l,m);

 if((double)number == auxResult) {

 isAchilles = false;

 }

 }

 if(!isAchilles) {break;}

 }

 if(isAchilles) {

 cout << number << " is an Achilles number";

 }

 else{

 cout << number << " is NOT an Achilles number";

 }

 return 0;

}

74

Barcelona 2024

28 Boggle Search
19 points

Introduction

Boggle is a word game where players try to find as many words as possible by connecting adjacent

letters on a rectangular lettered grid. It's a fun and challenging game that tests your vocabulary and

pattern recognition skills.

The following sequence shows the steps to find the word HELLO on a board.

Please notice that given a letter, the valid adjacent letters to continue composing a word are the

letters that can be found up, down, left and right to the last letter selected. A letter cannot be visited

twice. In case of words with a letter repeated consecutively, that letter must appear repeated also

in the board. To report the sequence to find a word follow this coordinate system:

So, the coordinates sequence for HELLO is (2,1), (1,1), (1,2), (0,2) and (0,1).

75

Barcelona 2024

To make things easier a word will appear only once in a boggle board. Can you write a program that

finds out a word and provides the corresponding sequence of coordinates?

Input

First line contains the word to find.

Second line is a positive integer representing the number of rows of the boggle board.

Finally, the content of every row with the letters contained in it.

Output

The output is the sequence of coordinates to find the word. Otherwise, the program must print out

that the word has not been found.

Example 1

Input

HELLO

3

A O L

D E L

G H I

Output

The word HELLO can be composed following the path: (2,1), (1,1), (1,2), (0,2)

and (0,1).

Example 2

Input

HELP

5

A O L S

D E L O

G H I P

X D F Q

H E L X

Output

The word HELP has not been found.

76

Barcelona 2024

Python

To check if a given [i,j] is within matrix range

def isValidPos(i,j):

 if (i >= 0 and i < rows and j >= 0 and j < columns):

 return True

 else:

 return False

To find out the list of valid neighbours for a given matrix position

def possibleNeighbours(i,j):

 # Candidates are up, left, right and down neighbours

 neighbours = [[i-1,j],[i,j-1],[i,j+1],[i+1,j]]

 toDelete = []

 # Check whether are within matrix limits and are nor part of the solution

 for x in neighbours:

 if (not isValidPos(x[0],x[1])) or x in solution:

 toDelete.append(x)

 # Remove invalid positions

 for x in toDelete:

 neighbours.remove(x)

 return neighbours

def wordIsCompleted(word, i, j, solution):

 #print(word, str(rows), str(columns), str(i),str(j))

 if word == "":

 #print("Word found!")

 return True

 else:

 neighbours = possibleNeighbours(i, j)

 # Check if there is a possible solution

 #print("Possible neighbours: " + str(neighbours))

 for i in neighbours:

 if matrix[i[0]][i[1]] == word[0]:

 #print("FOUND at " + str(i[0]) + "," + str(i[1]))

 solution.append([i[0],i[1]])

 #print("ongoing solution is : " + str(solution))

 if (wordIsCompleted(word[1:], i[0], i[1], solution) == True):

 return True

 else:

 solution.pop()

 return False

77

Barcelona 2024

Main program

matrix = []

solution = []

Read word to search in the board

word = input()

Read board from standard input

rows = int(input())

for i in range(rows):

 currentRow = input().split()

 matrix.append(currentRow)

Find out number of columns

columns = len(matrix[0])

wordFound = False

Traverse the whole matrix looking for first letter

for i in range(rows):

 for j in range(columns):

 if wordFound == False:

 #print("Checking: " + str(i) + "," + str(j))

 if matrix[i][j] == word[0]:

 #print("FOUND at " + str(i) + "," + str(j))

 solution.append([i,j])

 if wordIsCompleted(word[1:], i, j, solution) == True:

 wordFound = True

 else:

 solution = []

if solution == []:

 print ("The word " + word + " has not been found.")

else:

 res = "The word " + word + " can be composed following the path: "

 for i in solution:

 if i == solution[-1]:

 # Remove last comma and add last coordinates.

 res = res[:-2]

 res += " and (" + str(i[0]) + "," + str(i[1]) + ")."

 else:

 # Concatenate coordinates

 res += "(" + str(i[0]) + "," + str(i[1]) + "), "

 print(res)

78

Barcelona 2024

29 Battleship Board Sketcher
20 points

Introduction

Brugilda is developing a smartphone application to play the well-known Battleship game (aka Hundir

la flota). She is starting with a very basic user interface to sketch the board and the result of several

shots.

Battleship is a strategy-type guessing game of two players. Each player has a board with rows and

columns and places its own fleet of warships secretly. The objective is to destroy the opposing

player fleet by calling "shots", trying to guess the position of the different warships.

The fleet consists in different warships of several sizes:

Warship Name Size

Carrier 5

Battleship 4

Destroyer 3

Submarine 3

Patrol Boat 2

The size of each ship indicates the number of cells it occupies when placed on the board. Remember

that players must leave a safety perimeter of 1 cell around each warship, except in case the warship

is placed at any corner or along the board’s edges.

The board must have 10 rows and 10 columns. Rows named from 1 to 10 and columns from A to J.

79

Barcelona 2024

Check the following example picture. Several boats have been added to the board:

• Carrier warship horizontally at location "C3"

• Patrol Boat vertically at "F6"

• Destroyer horizontally at A8

• Submarine located at H10, also horizontally

Notice how the 1 cell safety perimeter is respected in all cases.

Calling a shot requires to specify the column (A, B, C, ...) and the row (1,2,3,...). If a warship receives as

many shots as its size, it is considered destroyed, so all the cells around the ship must be

immediately marked.

Following the example, we draw many shots on the current board. The Carrier received a shot at

"D3", the Destroyer stays intact, the Submarine also received one shot at H10 and the Patrol Boat

received two shots ("F6" and "F7") being completely destroyed.

80

Barcelona 2024

Code Requirements

Would you like to help Brugilda writing her prototype? The code must accomplish the following

requirements:

• Input the number of ships.

• Input the position (cell column and row) and orientation of each boat (horizontal and vertical).

• Input several shot calls, each one defined as a cell (column and row).

• With input data, draw a 10x10 board with ships properly placed, shots received and a player

health status.

• After all input data is entered the prototype must ensure that a valid board will be drawn:

o Ships do not exceed board dimensions.

o There are no ships overlapping. That is, a board cell can only contain one type of

warship.

o Once ships are placed, they respect the 1 cell safe perimeter around each ship.

Input

The input of this problem consists in 3 lines:

• First line is the number of ships. For example: Number of ships:4

• Subsequent lines correspond to the description and position of each boat in the form of

Boat Name,Cell,Orientation

Carrier,C3,H

Destroyer,A8,H

Patrol Boat,F6,V

Submarine,H10,H

Third line corresponds to the shots, separated by comas: Shots:D3,F6,F7

 It is not mandatory to enter any shot for the prototype to draw the board.

81

Barcelona 2024

Output

The game board with the ships in its positions and the shots marked as "X". Each boat is identified as

follows:

• Carrier: C

• Battleship: B

• Destroyer: D

• Submarine: S

• Patrol Boat: P

The board must show named columns and rows using | as column separator. The player health

status will use symbols “*“ and “-” to indicate remaining 'life' of each boat. See the example:

 |A|B|C|D|E|F|G|H|I|J|

1 | | |X| |X| | | | | |

2 | |X| | | | | | | | |

3 |X| |C|X|C|C|C| | | |

4 | |X| | | | | | | | |

5 | | | | |X|X|X| | | |

6 |X| | | |X|X|X| | | |

7 | |X| | |X|X|X| | | |

8 |D|D|D| |X|X|X| | | |

9 | | | | | | | | |X| |

10| | | | | | | |X|S|S|

Your Board Status:

Carrier at C3: ****-

Destroyer at A8: ***

Patrol Boat at F6: --

Submarine at H10: **-

Finally, as the prototype must check some board validity parameters, different output messages will

be showed according to the error found at input data:

• If any input ship, when placed at the board, exceeds board dimensions: `ERROR: At least one

warship's location exceeds board's dimensions`

• If any input ship, when placed at the board, causes overlap with another ship: `ERROR: There

is overlap between at least two ships`

82

Barcelona 2024

• After placing warships, if the 1 cell safety perimeter is not satisfied: `ERROR: Safety

perimeter is not respected`

• If any shot goes outside of the board: `ERROR: There is at least one shot going outside the

ºboard`

Example 1

Input

Number of ships:4

Carrier,C3,H

Destroyer,A8,H

Patrol Boat,F6,V

Submarine,H10,H

Shots:C1,E1,B2,A3,D3,B4,A6,E6,F6,G6,F7,B7,H10,I9

Output

 |A|B|C|D|E|F|G|H|I|J|

1 | | |X| |X| | | | | |

2 | |X| | | | | | | | |

3 |X| |C|X|C|C|C| | | |

4 | |X| | | | | | | | |

5 | | | | |X|X|X| | | |

6 |X| | | |X|X|X| | | |

7 | |X| | |X|X|X| | | |

8 |D|D|D| |X|X|X| | | |

9 | | | | | | | | |X| |

10| | | | | | | |X|S|S|

Your Board Status:

Carrier at C3: ****-

Destroyer at A8: ***

Patrol Boat at F6: --

Submarine at H10: **-

83

Barcelona 2024

Example 2

Input

Number of ships:1

Carrier,H10,V

Shots:A7

Output

ERROR: At least one warship's location exceeds board's dimensions

Example 3

Input

Number of ships:3

Carrier,C4,H

Battleship,D3,V

Submarine,F5,H

Shots:D7

Output

ERROR: There is overlap between at least two ships

Example 4

Input

Number of ships:1

Carrier,D3,H

Shots:L17

Output

ERROR: There is at least one shot going outside the board

84

Barcelona 2024

Python

import sys

###################

CAPTURE INPUT ##

n_ships = int(input().split(':')[1]) # Number of ships

input_ships = []

for k in range(n_ships):

 line = input()

 input_ships.append(line.split(','))

Input shots:

shots = input().split(':')[1].split(',')

Uncomment following line for testing purposes

input_ships = [["Destroyer","A1","V"],["Carrier","C2","H"], ["Patrol Boat",

"E4", "H"]]

###########################

DEFINE SCRIPT PARAMETERS

Define index for columns and rows

col_index = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]

Define Ships

def_ships = {'Carrier':5, 'Battleship':4, 'Destroyer':3, 'Submarine':3, 'Patrol

Boat':2}

Define Heart Unicode Symbols

full_heart = "*"

empty_heart = "-"

###################

PROCESS BOARD ##

Define empty 10x10 board.

n_rows = 10

n_cols = 10

board = []

for k in range(n_rows):

 board.append([" "] * n_cols)

Fill Board with ships and modify input_ships to handle full ship

85

Barcelona 2024

location and status. Use try:catch: to handle ships exceeding board size.

try:

 for ship in input_ships:

 ship_type = ship[0] # Ship type (Carrier, Destroyer, etc)

 ship_col = ord(ship[1][0]) - ord("A") # Get index of ship column

 ship_row = int(ship[1][1:len(ship[1])]) - 1 # Get index of ship row

 ship_dir = ship[2] # Get if ship is in H or V direction

 ship_size = def_ships[ship_type]

 # Remove ship direction. Will fill with all ship cells

 ship.pop(2)

 if ship_dir == 'H':

 for col in range(ship_col,ship_col+ship_size):

 if board[ship_row][col] == " ":

 # Cell is empty, fill it!

 board[ship_row][col] = ship_type[0]

 else:

 # Cell is not empty! Error, overlap!

 print("ERROR: There is overlap between at least two ships")

 sys.exit()

 # Add cell location to input_ships

 loc = '%s%s' % (col_index[col], ship[1][1:len(ship[1])])

 ship.append(loc)

 elif ship_dir == 'V':

 for row in range(ship_row,ship_row+ship_size):

 if board[row][ship_col] == " ":

 # Cell is empty, fill it!

 board[row][ship_col] = ship_type[0]

 else:

 # Cell is not empty! Error, overlap!

 print("ERROR: There is overlap between at least two ships")

 sys.exit()

 # Add cell location to input_ships

 loc = '%s%s' % (ship[1][0], str(row+1))

 ship.append(loc)

 # Add Ship Size to input_ships to track ship live status

 ship.append(ship_size)

 # Remove duplicated location of first cell

 ship.pop(1)

86

Barcelona 2024

except IndexError:

 # See sample-2.in and sample-2.out

 print("ERROR: At least one warship's location exceeds board's dimensions")

 sys.exit()

CHECK CELL SAFETY PERIMETER

for row in range(n_rows):

 for col in range(n_cols):

 warship = board[row][col]

 if warship == " ":

 pass; # Is a water cell, do nothing

 else:

 # Define search ROI to test safety perimeter

 row0 = row - 1 if (row - 1)>=0 else row

 row1 = row + 1 if (row + 1)<=n_rows-1 else row

 col0 = col - 1 if (col - 1)>=0 else col

 col1 = col + 1 if (col + 1)<=n_cols-1 else col

 # Get content of ROI

 roi_values = []

 for r in range(row0, row1+1):

 for c in range(col0, col1+1):

 # value is the content of the cell

 value = board[r][c]

 # Check if water cell

 if not value == " ":

 # If not water, then check if differ from "cell"

 if not value == warship:

 print("ERROR: Safety perimeter is not respected")

 sys.exit()

###################

PROCESS SHOTS ##

shots = ['A1','A2','E2','E4','F4']

I use try:except: to handle empty shots case

try:

 for shot in shots:

 shot_col = ord(shot[0]) - ord("A")

 shot_row = int(shot[1:len(shot)]) - 1

 if (shot_col < 0 or shot_col > 9) or (shot_row < 0 or shot_row > 9):

 print("ERROR: There is at least one shot going outside the board")

 sys.exit()

87

Barcelona 2024

 board[shot_row][shot_col] = "X"

 for ship in input_ships:

 if shot in ship:

 # Remove one live to ship status

 ship[-1] = ship[-1] - 1

 # Check if ship is sunken

 if ship[-1] == 0:

 # Draw "X" in all cells around ship

 for k in range(1,1+def_ships[ship[0]]):

 ship_col = ord(ship[k][0]) - ord("A")

 ship_row = int(ship[k][1:len(ship[k])]) - 1 # Get index

of ship row

 for col in range(ship_col-1, ship_col+2):

 for row in range(ship_row-1,

ship_row+2):

 # Check that indices are positive

 low_bound = (row >= 0) and (col >= 0)

 up_bound = (row <= 9) and (col <= 9)

 if low_bound and up_bound:

 board[row][col] = "X"

except IndexError:

 pass

############################

PRINT BATTLESHIP BOARD ##

Print Col Header

head = ''.join(["|%s" % (k) for k in col_index])

head = head + '|'

head = ' '+head

print(head)

Print Board Rows

row_index = 1

cell_separator = "|"

for row in board:

 endChar = ''

 if len(str(row_index)) == 1:

 endChar = ' '

88

Barcelona 2024

 else:

 endChar = ''

 # Print row index

 print(str(row_index), end=endChar)

 # Print each row

 for cell in row:

 print(cell_separator + cell, end="")

 print(cell_separator, end="\n")

 row_index = row_index + 1

##########################

PROCESS BOARD STATUS ##

Print your ships status

print("\nYour Board Status:")

for ship in input_ships:

 ship_live = full_heart * (ship[-1]) + empty_heart * (def_ships[ship[0]]-

ship[-1])

 ship_status = "%s at %s: %s" % (ship[0], ship[1], ship_live)

 print(ship_status)

89

Barcelona 2024

30 Treetronomical Challenge
25 points

Introduction

As an interstellar gardener you are tasked with measuring the cosmic trees of the galaxy. These

unique trees are binary, wherein each tree node is connected at most to two child nodes: the left

child and right child. In this tree a node represents a planet and the connections between planets are

branches that stretch across light-years. These branches which connect planets are a type of

wormhole through which you can travel instantly. Your spaceship can jump from planet to planet

using these wormholes. Each jump consumes one unit of fuel. Your mission is to calculate the

cosmic diameter of these wondrous trees, which is the longest distance between any two planets

connected to the tree. Since your spaceship has limited fuel, you need to find the cosmic diameter

in advance to know how much fuel is needed to explore the far reaches of a given cosmic tree of

the galaxy.

Here is an example of a cosmic tree (the same that is used in Example 3):

 Arrakis

 ┌───────┴───────┐

 Pandora Vulcan

 ┌───┴ ┌───┴───┐

 Krypton Caprica Trantor

 ┌─┴ ┌─┴

 Alderaan Solaris

 ┴───┐

 Mongo

The root node for the tree is planet Arrakis. It has two child nodes: on the left the planet Pandora and

on the right the planet Vulcan. Pandora is the root of a tree with just one planet at the left: Krypton.

On the other hand, Vulcan has two child planet nodes: Caprica on the left and Trantor on the right.

And so, it continues for the following planets on the tree.

 The diameter of a binary tree is the length of the longest path between any two nodes
in a tree. This path may or may not pass through the root.

Can you write a program that calculates the cosmic diameter of these trees?

90

Barcelona 2024

Input

A cosmic tree is represented using parentheses that follow the binary tree structure.

 Node1

 ┌───┴───┐

 Node2 Node3

 ┌─┴ ─┴─┐

 Node4 Node5

The notation "Node1(Node2,Node3)" represents a binary tree structure in a human-readable format.

Here's how this notation can be interpreted: "Node1" represents the root node of the binary tree,

"Node2" is the left child node and "Node3" is the right child node. In this notation, you can see that the

tree structure is defined recursively. "Node2" and "Node3" can themselves be binary tree structures

following the same notation, allowing for the representation of complex binary trees. So, this whole

tree can be represented as Node1(Node2(Node4),Node3(,Node5)). Please notice that there are not

any white space and that a single left node is noted as (Node4) while in case of a single right node a

comma precedes the node (,Node5).

Output

The output is a positive integer with the cosmic diameter.

Example 1 Example 2

Input Input

PlanetA(PlanetB(PlanetC)) PlanetA(,PlanetB)

Output Output

3 2

Example 3

Input

Arrakis(Pandora(Krypton(Alderaan)),Vulcan(Caprica,Trantor(Solaris(,Mongo))))

Output

8

91

Barcelona 2024

Python

class TreeNode:

 def __init__(self, value):

 self.name = value

 self.left = None

 self.right = None

Auxiliar function to draw a tree

def printTree(root, depth=0, prefix="Root: "):

 if root is not None:

 print(" " * (depth * 4) + prefix + root.name)

 if root.left is not None and root.right is not None:

 printTree(root.left, depth + 1, "L-- ")

 printTree(root.right, depth + 1, "R-- ")

 elif root.left is not None:

 printTree(root.left, depth + 1, "L-- ")

 elif root.right is not None:

 printTree(root.right, depth + 1, "R-- ")

Function to find height of a tree

def height(root):

 if (root == None):

 return 0

 left = height(root.left)

 right = height(root.right)

 return max(left, right) + 1

Computes the diameter of binary tree with given root.

def diameter(root):

 if root is None:

 return 0

 lheight = height(root.left)

 rheight = height(root.right)

 ldiameter = diameter(root.left)

 rdiameter = diameter(root.right)

 return max(lheight + rheight + 1, max(ldiameter, rdiameter))

Parentheses are used to represent the binary tree structure.

You start with an open parenthesis for the root, then represent

the left subtree, followed by the right subtree. Close the

parenthesis when you finish the subtree.

92

Barcelona 2024

Example:

1

/ \

2 3

/ \

4 5

Using this approach, this tree would be represented as 1(2(4,5),3)

def buildTree(input):

 #print("tree to process: " + input)

 # Check whether input is empty

 if input == "":

 return None

 # First find node root

 index = input.find("(")

 if index != -1:

 rootName = input[:index]

 else:

 rootName = input

 node = TreeNode(rootName)

 #print("root: " + rootName)

 # Check whether are left or right subtrees

 if index == -1:

 return node

 # Now split left and right trees,

 # remove root and front, also remove rear bracket

 remaining = input[len(node.name)+1:-1]

 cntBrackets = 0

 pos = 0

 left=""

 right=""

 for i in range(len(remaining)):

 if remaining[i] == "(":

 cntBrackets += 1

 elif remaining[i] == ")":

 cntBrackets -= 1

 elif remaining[i] == ",":

 if cntBrackets == 0:

 pos = i

93

Barcelona 2024

 break;

 if pos != 0:

 left = remaining[:pos]

 else:

 if remaining[0] != ",":

 left = remaining

 #print("left: " + left)

 node.left = buildTree(left)

 if remaining[pos] == ",":

 right = remaining[pos+1:]

 #print("right: " + right)

 node.right = buildTree(right)

 return node

data = input()

root = buildTree(data)

#printTree(root)

print(diameter(root))

94

Barcelona 2024

31 Sustainable Batteries
30 points

Introduction

Welcome to the R&D laboratory! We discovered a new material that could open the door to more

sustainable batteries because it has a very special property: it can be charged with electrical

current and its molecules accumulate energy, expanding the material. Then, when the material is

under a constant pressure along its surface, the molecules start moving, producing an electrical

current when they collide with other molecules. However, since this new material is not completely

perfect, the molecules may collide with "obstacles" due to the material's impurity.

We want to analyze the trajectory of the molecules placed at different positions. Could you help us

by creating a simulator for the molecules' movement? The simulator must fulfill the following

requirements:

- The simulation must generate a sequence of 2D grids, each grid representing the position of the

molecules and the obstacles at the same time sample (the duration of the simulation is specified

as part of the input).

- The molecules will be placed at different positions within a 2D grid, each one with its own initial

direction, and all of them will move at the same time with the same speed.

- The obstacles are placed at arbitrary positions within a 2D grid and they do not move during the

simulation.

- When a molecule collides with an obstacle or the edges of the 2D grid, the molecule bounces

and its direction is inverted accordingly. Therefore, a molecule cannot be placed outside the 2D

grid or in the same position than an obstacle.

- When a molecule collides with another molecule, the collision must be marked in the 2D grid.

Therefore, different molecules may be placed in the same position of the 2D grid. After collision

the molecules won’t change their trajectory.

Important! Obstacles may be next to other obstacles (in adjacent cells), but they will
never form gaps of only 1 cell between obstacles (they must be at least 2 cells away of
other obstacles).
 Use the web-based tool in Guides & Tools tab that we implemented to see the output
in a more visual way. It will help you to implement the solution :)

The input describes the dimensions of the 2D grid of the simulation, the number of frames that the

simulator must provide and the initial state of the molecules and obstacles. More precisely:

95

Barcelona 2024

- The 1st line is the word "rows" followed by a positive integer higher or equal than 3, which

indicates the number of rows of the 2D grid.

- The 2nd line is the word "cols" followed by a positive integer higher or equal than 3, which

indicates the number of columns of the 2D grid.

- The 3rd line is the word "frames" followed by a positive integer higher or equal than 2, which

indicates the number of frames of the 2D grid that the simulation must compute.

- The rest of the lines describe the initial state of the molecules and obstacles, until no more lines

are provided:

o If the line starts with the word "molecule", it is followed by 5 numbers:

1st ID of the molecule, which will be used to represent the molecule in the 2D grid.

Different molecules can have the same ID, it is only used to have different types

of molecules.

2nd an integer in the range [0, rows) which indicates the initial row of the molecule.

3rd an integer in the range [0, cols) which indicates the initial column of the molecule.

4th an integer in the range [-1, 1] which indicates the initial direction in the "rows" axis.

5th an integer in the range [-1, 1] which indicates the initial direction in the "cols" axis.

o If the line starts with the word "obstacle", it is followed by 2 numbers:

1st an integer in the range [0, rows) which indicates the row of the obstacle.

2nd an integer in the range [0, cols) which indicates the column of the obstacle.

Output

The output must be a sequence of 2D matrices following a JSON format for arrays (see the output

to clarify this format), providing as many matrices as indicated in the "frames" number from the input,

being the first matrix the initial state of the 2D grid, with all the particles and obstacles in their initial

position.

Each matrix must have size "rows x cols" and must be filled according to the following rules:

- The position of the molecules in the matrix must be filled with their ID.

- The position of the obstacles in the matrix must be filled with value -1.

96

Barcelona 2024

- If 2 or more molecules are in the same position of the 2D grid, that cell must be filled with value -2.

- Any other cell without molecules or obstacles must be filled with value 0.

Example 1

Input

rows 8

cols 12

frames 6

molecule 1 0 0 1 1

molecule 2 3 4 1 1

molecule 1 7 8 -1 -1

obstacle 2 2

obstacle 2 8

obstacle 3 8

obstacle 5 3

obstacle 5 4

obstacle 5 5

Output

[

[

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

],

[

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0],

97

Barcelona 2024

[0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

],

[

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, -1, -1, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

],

[

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 2, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

],

[

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, -1, -1, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

],

98

Barcelona 2024

[

[0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

]

]

Example 2

Input

rows 10

cols 23

frames 3

molecule 1 0 2 1 1

molecule 2 5 11 -1 1

molecule 3 6 17 1 1

obstacle 2 3

obstacle 2 4

obstacle 2 5

obstacle 2 10

obstacle 2 11

obstacle 2 12

obstacle 2 13

obstacle 2 16

obstacle 3 2

obstacle 3 6

obstacle 3 9

obstacle 3 16

obstacle 4 2

obstacle 4 6

obstacle 4 9

99

Barcelona 2024

obstacle 4 16

obstacle 5 2

obstacle 5 3

obstacle 5 4

obstacle 5 5

obstacle 5 6

obstacle 5 9

obstacle 5 16

obstacle 6 2

obstacle 6 6

obstacle 6 9

obstacle 6 16

obstacle 7 2

obstacle 7 6

obstacle 7 10

obstacle 7 11

obstacle 7 12

obstacle 7 13

obstacle 7 16

obstacle 7 17

obstacle 7 18

obstacle 7 19

obstacle 7 20

Output

[

[

[0, 0, 1, 0],

[0, 0],

[0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0,

0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, -1, -1, -1, -1, 0, 0, -1, 0, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 3, 0, 0, 0, 0, 0],

100

Barcelona 2024

[0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, -1, 0,

0],

[0, 0],

[0, 0]

],

[

[0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0,

0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 3, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, -1, 0,

0],

[0, 0],

[0, 0]

],

[

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0],

[0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0,

0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 2, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 3, 0, 0, 0],

[0, 0, -1, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, -1, 0,

0],

[0, 0],

[0, 0]

]

]

101

Barcelona 2024

Python

import sys

from copy import deepcopy

from typing import List

Some global constants

CELL_EMPTY = 0

CELL_WALL = -1

DEBUG = False

class Molecule:

 def __init__(self, id: int, row: int, col: int, step_r: int, step_c: int):

 self.id = id

 self.row = row

 self.col = col

 self.step_r = step_r

 self.step_c = step_c

 return

def generate_frames(molecules: List[Molecule], frame_rows: int, frame_cols: int,

num_frames: int, frame_template: List[List[int]]) -> List[List[List[int]]]:

 frames = []

 for num_frame in range(num_frames):

 # Create a frame with the current state

 if DEBUG:

 print("Frame " + str(num_frame))

 frame = deepcopy(frame_template)

 for molecule in molecules:

 assert molecule.row >= 0

 assert molecule.row < frame_rows

 assert molecule.col >= 0

 assert molecule.col < frame_cols

 assert frame[molecule.row][molecule.col] != CELL_WALL

 if frame[molecule.row][molecule.col] == 0:

 frame[molecule.row][molecule.col] = molecule.id

 elif frame[molecule.row][molecule.col] > 0:

 frame[molecule.row][molecule.col] = -2

 if DEBUG:

 print(f"molecule {molecule.id} at ({molecule.row}, {molecule.col}) with

dir ({molecule.step_r},{molecule.step_c})")

 frames.append(frame)

 if DEBUG:

 for row in frame:

102

Barcelona 2024

 for col in row:

 if col == 0:

 print(".", end="")

 elif col == -1:

 print("O", end="")

 elif col == -2:

 print("X", end="")

 else:

 print(col, end="")

 print()

 print()

 # Update the molecules state

 for molecule in molecules:

 moleculeRowIsEdge = (molecule.row == 0 and molecule.step_r < 0) or

(molecule.row == frame_rows-1 and molecule.step_r > 0)

 moleculeColIsEdge = (molecule.col == 0 and molecule.step_c < 0) or

(molecule.col == frame_cols-1 and molecule.step_c > 0)

 if moleculeRowIsEdge or moleculeColIsEdge:

 # If the molecule is on the frame edges, fix the direction depending on

the situation

 if moleculeRowIsEdge:

 molecule.step_r = -molecule.step_r

 if moleculeColIsEdge:

 molecule.step_c = -molecule.step_c

 else:

 # If not in the frame edges, check if there is some wall that requires

to fix the molecule direction

 # Bounce in horizontal walls

 if frame_template[molecule.row + molecule.step_r][molecule.col] ==

CELL_WALL:

 molecule.step_r = -molecule.step_r

 # Bounce in vertical walls

 if frame_template[molecule.row][molecule.col + molecule.step_c] ==

CELL_WALL:

 molecule.step_c = -molecule.step_c

 # Bounce in corners (be careful because the previous 'ifs' are already

contemplating "concave corners", so

 # we want to detect here only convex corners)

 if (molecule.step_r != 0 and molecule.step_c != 0 and

 frame_template[molecule.row + molecule.step_r][molecule.col +

molecule.step_c] == CELL_WALL and

 frame_template[molecule.row +

molecule.step_r][molecule.col] != CELL_WALL and

103

Barcelona 2024

 frame_template[molecule.row][molecule.col +

molecule.step_c] != CELL_WALL):

 molecule.step_r = -molecule.step_r

 molecule.step_c = -molecule.step_c

 # Update the molecule position

 molecule.row = molecule.row + molecule.step_r

 molecule.col = molecule.col + molecule.step_c

 return frames

def print_frames(frames: List[List[List[int]]]) -> None:

 print("[")

 for frameIdx in range(len(frames)):

 print("[")

 for rowIdx in range(len(frames[frameIdx])):

 print(frames[frameIdx][rowIdx],end="")

 if rowIdx == len(frames[frameIdx])-1:

 print("")

 else:

 print(",")

 if frameIdx == len(frames)-1:

 print("]")

 else:

 print("],")

 print("]")

 return

def read_input_line(expectation: str = "") -> List[str]:

 line = sys.stdin.readline().rstrip()

 if len(line) > 0:

 line_words = line.split(" ")

 assert len(line_words) > 0

 if len(expectation) > 0:

 assert line_words[0] == expectation

 return line_words

 else:

 return []

def main() -> None:

 # Read the input rows, cols and frames

 frame_rows = int(read_input_line("rows")[1])

 frame_cols = int(read_input_line("cols")[1])

 num_frames = int(read_input_line("frames")[1])

104

Barcelona 2024

 # Create the empty template of a frame

 frame_template = [[0] * frame_cols for x in range(frame_rows)]

 # Read the molecules and obstacles

 molecules = []

 line_words = read_input_line()

 while len(line_words) > 0:

 if line_words[0] == "molecule":

 assert len(line_words) == 6

 molecules.append(Molecule(int(line_words[1]), int(line_words[2]),

int(line_words[3]), int(line_words[4]), int(line_words[5])))

 elif line_words[0] == "obstacle":

 assert len(line_words) == 3

 frame_template[int(line_words[1])][int(line_words[2])] = -1

 else:

 assert False # This should never happen if the input is correct

 line_words = read_input_line()

 # Generate and print the frames

 print_frames(generate_frames(molecules, frame_rows, frame_cols, num_frames,

frame_template))

 return

main()

105

Barcelona 2024

32 Monster Slayer
35 points

Introduction

There is a new video game called Monster Slayer, in which each player controls a group of heroes

that go into dungeons and kill all the monsters there. The faster they clear the dungeons, the more

points they gain.

In each dungeon there may be different classes of monsters: Trolls, Golems, Demons and Dragons.

Each monster will have an associated elemental type: Fire, Ice, Earth. The heroes' equipment also

has an elemental type, so that it is more effective depending on the elemental type of the monster.

The effectiveness rules are as follows (effective equipment, ineffective equipment):

- Fire monsters: Earth, Ice

- Ice monsters: Fire, Earth

- Earth monsters: Ice, Fire

In Monster Slayer, the more monsters you kill in a dungeon and the less turns it takes you to do it, the

more points you get. Noelia is a competitive player, and she wants to go up in the online rankings.

Noelia is confident that she can complete every dungeon with her heroes so she has elaborated a

table with the number of turns it takes to kill a monster in the best case, depending on the

effectiveness of the equipment:

Monster
Class

Effective Neutral Ineffective

Dragon 7 turns 9 turns 12 turns

Demon 3 turns 7 turns 11 turns

Golem 2 turns 5 turns 7 turns

Troll 2 turns 3 turns 5 turns

Furthermore, the heroes can change the equipment type in the middle of a dungeon only once, by

using 2 turns.

Noelia's favorite equipment is Fire, then Ice and lastly Earth. If she has multiple best options, she will

always choose her heroes to stay for the longest time in the equipment she likes the most.

Taking all of this information into account, can you write a program to help Noelia decide which

equipment type (with or without changes) allows her to clear the dungeon faster?

106

Barcelona 2024

Input

The first line will be the number of monsters in a dungeon. The following lines will contain the order in

which monsters appear, each monster class and its type.

Output

The output should be a line containing the initial equipment to use, the change of equipment to

perform if it's the case followed by the lines containing the monsters to slay with that equipment.

Example 1

Input

5

Earth Golem

Ice Troll

Ice Dragon

Earth Demon

Ice Demon

Output

Initial equipment: Ice

Earth Golem

Ice Troll

Ice Dragon

Earth Demon

Changing to Fire equipment

Ice Demon

When she had to fight against the Ice Demon with an Ice equipment the effectiveness is neutral, but

if she changes her equipment to the one that is effective, even if she waste 2 turns she will kill the

monster faster.

107

Barcelona 2024

Example 2

Input

5

Fire Dragon

Ice Dragon

Fire Dragon

Ice Dragon

Fire Dragon

Output

Initial equipment: Fire

Fire Dragon

Ice Dragon

Fire Dragon

Ice Dragon

Fire Dragon

Although having multiple options that result in the same number of turns spent (like swapping to

Earth equipment before the last enemy), this is the only valid output because it is the one that spends

more time in the Fire equipment (this being Noelia's favorite equipment)

Python

import sys

ADVANTAGE = 0

NEUTRAL = 1

DISADVANTAGE = 2

ELEMENT = 0

RACE = 1

DRAGON = 0

DEMON = 1

GOLEM = 2

TROLL = 3

#We define the number of turns for each monster

MONSTER_TURNS = [

 [7, 9, 12], #DRAGON TURNS

 [3, 7, 11], #DEMON TURNS

 [2, 5, 7], #GOLEM TURNS

108

Barcelona 2024

 [2, 3, 5] #TROLL TURNS

]

#We define the elements list in the order of Natalia's liking

ELEMENTS = ["Fire", "Ice", "Earth"]

#This function will get the number of turns spent killing the monster

def calcSpentTurns(currentMonster, playerElement):

 #We first check if we will have advantage, disadvantage or we will be

neutral

 if playerElement == currentMonster[ELEMENT]:

 strategy = NEUTRAL

 else:

 if currentMonster[ELEMENT] == "Fire":

 if playerElement == "Earth":

 strategy = ADVANTAGE

 else:

 strategy = DISADVANTAGE

 elif currentMonster[ELEMENT] == "Ice":

 if playerElement == "Fire":

 strategy = ADVANTAGE

 else:

 strategy = DISADVANTAGE

 else:

 if playerElement == "Ice":

 strategy = ADVANTAGE

 else:

 strategy = DISADVANTAGE

 #Then we return the number of turns with the according monster and

advantage/disadvantage/neutral

 if currentMonster[RACE] == "Dragon":

 return MONSTER_TURNS[DRAGON][strategy]

 elif currentMonster[RACE] == "Demon":

 return MONSTER_TURNS[DEMON][strategy]

 elif currentMonster[RACE] == "Golem":

 return MONSTER_TURNS[GOLEM][strategy]

 else:

 return MONSTER_TURNS[TROLL][strategy]

#Function that will print the final output

def printFinalCombination(monsters, turnEquipmentChange, initialElement,

elementChange):

 #Print initialEquipment

 print("Initial equipment: " + initialElement)

 for i in range(len(monsters)):

109

Barcelona 2024

 if i == turnEquipmentChange and elementChange != initialElement:

 #If we reach the turn when we do the equipment change, and we change

to a different element,

 # we print it

 print("Changing to " + elementChange + " equipment")

 #Print the monsters we are fighting

 print(monsters[i][ELEMENT] + " " + monsters[i][RACE])

####################### MAIN FUNCTION #####################

lowestTurnCount = sys.maxsize

finalPosTurnChange = sys.maxsize

monsters = []

numMonsters = int(input())

#We store all the monsters that we will fight

for i in range(numMonsters):

 monsterRead = input()

 monsterData = monsterRead.split(" ")

 monsters.append(monsterData)

#We test starting with all 3 different elements

for initialElement in range(3):

 #We loop through all possible positions where equipment could be changed

 for currentChange in range(numMonsters):

 #We do the 1st monster manually as we don't want to swap at the

begining. This also works as a

 # turn reset between turn calculations

 turnSum = calcSpentTurns(monsters[0], ELEMENTS[initialElement])

 #We loop through the monsters that we will slay before changing

equipment

 for currentMonster in range(1, currentChange):

 turnSum += calcSpentTurns(monsters[currentMonster],

ELEMENTS[initialElement])

 #We test both elements that we can swap to

 for newElement in range(3):

 #We use an auxiliar variable to be able to calculate both element's

turns

 #We check if we are calculating the next monsters with the elements

changed

 if newElement != initialElement:

110

Barcelona 2024

 #If the element is changed, we add the 2 turns that action takes

 turnSumNewElement = turnSum + 2

 else:

 turnSumNewElement = turnSum

 #We loop through the remaining monsters with the new element

 for currentMonster in range(currentChange, numMonsters):

 turnSumNewElement += calcSpentTurns(monsters[currentMonster],

ELEMENTS[newElement])

 #If we find a combination with a lower turn count, we store it

 #NOTE: If a turnCount is equal to the lowest, it will be discarded,

and since we check

 # in order of Natalia's likings, we will always store the best

option according to her likings.

 if turnSumNewElement < lowestTurnCount:

 lowestTurnCount = turnSumNewElement

 finalPosTurnChange = currentChange

 finalInitialElement = ELEMENTS[initialElement]

 finalElementChange = ELEMENTS[newElement]

printFinalCombination(monsters, finalPosTurnChange, finalInitialElement,

finalElementChange)

