

Problems
and solutions

Valencia 2025

Valencia 2025

Problem Points

1 Moviegoers 1

2 Fizz Buzz 3

3 Robocup Ball Position 3

4 DAC Conversion 4

5 Recover Information 4

6 Climbing And Descending 4

7 The Easter Bunny Problem 4

8 Happy Pi Day 4

9 La Barbacoa 4

10 Compound Interest Calculator 5

11 Ancient Cryptex 5

12 Sophie Germain 6

13 New Printer 6

14 The Sudoku Redemption Challenge 7

15 Adler 32 7

16 TriPizza 7

17 The riddle of the Golden Numbers 7

18 Single Neuron 8

19 Vigenere Cipher Encoder 8

20 A Polynomial Spell 10

21 Viking ascent 10

22 Undo Redo Actions 12

23 Gladiators Clash 12

24 EHB League 13

25 Ancient time Traveller 13

26 The automatic coach 13

27 Lagrange's Four Squares 13

28 Ready Player One 17

29 Minesweeper 19

30 Time Corridors 30

Valencia 2025

3

Valencia 2025

1 Moviegoers
1 points

Introduction

Stanley and Alfred are planning to attend a screening of a classic movie. They have already

purchased their tickets online and do not intend to stop in the lobby for snacks and drinks.

Consequently, they will be able to proceed directly to the screening room. Stanley is currently

uncertain about the appropriate time to depart. He is at his residence now and must first pick up

Alfred. It will take him several minutes to drive to Alfred’s home, and then additional minutes to travel

from Alfred’s home to the cinema. If the film is scheduled to begin at a specific minute of the day, at

what minute should Stanley commence his journey to ensure they do not miss the beginning of the

movie?

Input

The input is composed of three lines. The first line contains a single integer indicating the duration in

minutes to reach Alfred’s residence. The second line includes a single integer denoting the travel

time in minutes from Alfred’s home to the cinema. The third line presents a single integer specifying

the minute of the day when the movie is set to begin.

Output

The output is a single integer representing the latest minute of the day that Stanley can begin driving

to ensure they arrive on time.

Example

Input

10

4

1335

Output

1321

Python

timeToAlfred = int(input())

timeToCinema = int(input())

timeMovieStarts = int(input())

Calculate the time Alfred needs to leave to get to the cinema on time

print(timeMovieStarts - (timeToAlfred + timeToCinema))

4

Valencia 2025

2 FizzBuzz
3 points

Introduction

You are playing FizzBuzz with your friend, but he claims that you missed saying the correct word
several times. To prove that you were correct, you will implement a function that counts from m to n
playing the game with the following conditions:

• For numbers that are multiples of 3, you will print Fizz instead of the number.

• For numbers that are multiples of 5, you will print Buzz instead of the number.

• For numbers that are multiples of 3 and 5, you will print FizzBuzz.

Input

The first input will be a line with m, the number you must count from.
The second input will be a line with n, the number you must count to.

Output

The output will be the list of numbers with Fizz, Buzz or FizzBuzz in the right place.

Example 1

Input

1

5

Output

1

2

Fizz

4

Buzz

Example 2

Input

7

15

Output

7

8

Fizz

Buzz

11

Fizz

13

14

FizzBuzz

5

Valencia 2025

Python

Read input image

m = int(input())

n = int(input())

for i in range(m,n+1):

 if(i%3==0 and i%5==0):

 print("FizzBuzz")

 elif(i%3==0):

 print("Fizz")

 elif(i%5==0):

 print("Buzz")

 else:

 print(i)

6

Valencia 2025

3 RoboCup Ball Position
3 points

Introduction

This is a true story. All characters depicted in this story have been modified to protect their identity.

In 2011, while participating in the RoboCup soccer competition (an autonomous robot competition to

play soccer), we developed stereo cameras (i.e., two cameras) mounted on the ceiling that could

track the ball and provide the 3D coordinates of the ball (X, Y, Z). There was just one problem: the

position was given using one of the cameras as a reference, but we needed the center of the field

as the reference.

Therefore, we took some measurements:

• When the ball was at the position (0, 0, 0) of the field, the stereo cameras system marked (-

0.378094, -0.044534, 3.54707).

• When the ball was at the position (0, 0, 1) of the field, the stereo cameras system marked (-

0.460408, -0.74951, 2.91714).

• When the ball was at the position (-1, 0, 0) of the field, the stereo cameras system marked

(0.427701, -0.555208, 3.98178).

• When the ball was at the position (0, 1, 0) of the field, the stereo cameras system marked

(0.288779, 0.451449, 2.93639).

• When the ball was at the position (1, 1, 0) of the field, the stereo cameras system marked (-

0.517016, 0.962123, 2.50168).

• When the ball was at the position (1, 0, 0) of the field, the stereo cameras system marked (-

1.183889, 0.46614, 3.11236).

• When the ball was at the position (-1, -1, 0) of the field, the stereo cameras system marked

(0.77, -0.208, 1.8878).

• When the ball was at the position (1, -1, 1) of the field, the stereo cameras system marked (1.111,

0.872364, -1.6786).

These values are the real measured values, so do not expect the results to be nicely rounded

integers.

7

Valencia 2025

You are asked to write a program that, given a point P (X, Y, Z) measured from the camera, returns

the position of the ball on the field.

Input

Your program will receive three comma-separated integers ranging from -1 to 1 and will return the
corresponding 3D stereo camera values with six decimal places.

Output

These integer numbers may or may not correspond to specific field positions. If they do correspond
(for instance, 0,0,1), the 3D stereo camera values will be displayed. Note that all stereo camera
values will be shown with six decimal places. If the input values do not correspond to any 3D camera
values, the text "INVALID POSITION" will be displayed.

Example 1

Input

0,0,1

Output

-0.460408,-0.749510,2.917140

Example 2

Input

0,1,0

Output

0.288779,0.451449,2.936390

Example 3

Input

-1,0,1

Output

INVALID POSITION

8

Valencia 2025

Python

Mapping of field positions to stereo camera coordinates

field_to_camera = {

 (0, 0, 0): (-0.378094, -0.044534, 3.547070),

 (0, 0, 1): (-0.460408, -0.749510, 2.917140),

 (-1, 0, 0): (0.427701, -0.555208, 3.981780),

 (0, 1, 0): (0.288779, 0.451449, 2.936390),

 (1, 1, 0): (-0.517016, 0.962123, 2.501680),

 (1, 0, 0): (-1.183889, 0.466140, 3.112360),

 (-1, -1, 0): (0.770000, -0.208000, 1.887800),

 (1, -1, 1): (1.111000, 0.872364, -1.678600),

}

def get_camera_coordinates(x, y, z):

 # Check if the given position exists in the dictionary

 if (x, y, z) in field_to_camera:

 # Return the corresponding stereo camera coordinates, formatted to 6

decimal places

 camera_coords = field_to_camera[(x, y, z)]

 return

f"{camera_coords[0]:.6f},{camera_coords[1]:.6f},{camera_coords[2]:.6f}"

 else:

 # If the position is not found, return "INVALID POSITION"

 return "INVALID POSITION"

Read the input from the user

x, y, z = map(int, input("").split(','))

Get the camera coordinates or invalid message

result = get_camera_coordinates(x, y, z)

Print the result

print(result)

9

Valencia 2025

4 DAC Conversion
4 points

Introduction

In electronics, a digital-to-analog converter (DAC) is a device that transforms a binary signal into an
analog output. For example, an 8-bit DAC can represent up to 256 different values, with each step
differing by 1/256 of the full-scale value, which defines the system’s resolution.

Let’s create a program that converts a decimal representation of a signal into the corresponding
analog voltage level produced by a DAC. Given a value range of 0-1023 and a reference range of 0-
5.00 volts, the value and reference are directly proportional.

Input

The input is a positive integer with 10-bit resolution.

Output

The output is the reference voltage rounded to two decimal places.

Example 1 Example 2 Example 3 Example 4

Input

0

Input

1023

Input

356

Input

2

Output

0.00 V

Output

5.00 V

Output

1.74 V

Output

0.01 V

Python

def dac_output(decimal_value):

 # Calculate the analog voltage

 analog_voltage = (decimal_value / 1023) * 5.00

 # Round the result to two decimal places

 return round(analog_voltage, 2)

Example usage

digitalInput = int(input())

print(f"{dac_output(digitalInput):.2f} V")

10

Valencia 2025

5 Recover Information
4 points

Introduction

You are working on data recovery from a RAID system that has experienced corruption on one of
its hard drives. In this system, redundant information is stored on an additional disk to ensure data
integrity. Your task is to restore the information from the damaged hard drive using the redundancy
disk.

The first line of input represents the contents of the functioning RAID hard drive (data disk), while the
second line represents the contents of the redundancy disk (parity disk). Your goal is to combine the
data from these two disks using a NAND operation. The logic of the NAND operation is defined as
follows:

0 NAND 0 = 1
0 NAND 1 = 1
1 NAND 0 = 1
1 NAND 1 = 0

Can you write a program that combines the data from the data and parity disks according to this
NAND operation?

Input

You will be provided with two lines of input, each representing the contents of one of the disks in
binary format. Both lines will have the same length.

Output

Output a single line that represents the result of applying the NAND operation between the two input
lines.

Example

Input

11001

10110

Output

01111

11

Valencia 2025

Python

disk1 = input()

disk2 = input()

result = ""

for i in range(0,len(disk1)):

 if disk1[i] == '1' and disk2[i] == '1':

 result += '0'

 else:

 result += '1'

print(result)

12

Valencia 2025

6 Climbing And Descending
4 points

Introduction

Imagine you are on a hiking adventure, climbing a mountain. Your journey starts at the base, and you

steadily ascend, step by step, until you reach the peak. At the peak, you take a moment to enjoy the

breathtaking view. Afterward, you begin your descent, carefully making your way down the other

side of the mountain until you reach the base again.

In this problem, a sequence of numbers represents your journey. The numbers should first increase,

symbolizing your climb up the mountain, and then decrease, symbolizing your descent. Your task is

to determine if the sequence of numbers follows this pattern of climbing to a peak and then

descending, just like a perfect mountain hike. If the sequence does, it means you successfully

climbed and descended the mountain. If not, it means your journey did not follow the expected path.

Input

The input consists of:

• The first line contains an integer N, the number of elements that composes a journey

• The next N lines each contain a positive integer, representing the elements of the
sequence.

Output

"True" if the sequence first strictly increases and then strictly decreases. Otherwise, print "False".

Example 1

Input

3

4

5

6

Output

False

Example 2

Input

6

1

3

4

12

10

9

Output

True

Example 3

Input

5

1

3

2

1

5

Output

False

Example 4

Input

5

4

3

2

1

2

Output

False

13

Valencia 2025

Python

Check if a sequence of positive integers is first increasing, arrives to a

peak, and then decreases.

def checkSequence(sequence):

 increasing = True

 for i in range(1, len(sequence)):

 if increasing:

 # Beware of the case the sequence starts decreasing

 if sequence[i] < sequence[i-1] and i == 1:

 return False

 if sequence[i] < sequence[i-1]:

 increasing = False

 if not increasing:

 if sequence[i] > sequence[i-1]:

 return False

 return not increasing

Read input

numElements = int(input())

elements = []

for _ in range(numElements):

 elements.append(int(input()))

Check if the sequence is climbing and descending

if checkSequence(elements):

 print("True")

else:

 print("False")

14

Valencia 2025

7 The Easter Bunny Problem
4 points

Introduction

This year, the Easter Bunny visited the Egyptian pyramids and was fascinated. To pay homage to
them, he wants to hide the eggs in a perfectly triangular shape. This is the idea he has in mind:

With 1 egg, you CAN form a perfectly triangular structure, and with 3, and with 6, ... But it would not
work with 2 eggs, nor with 4, nor with 5, … Can you help him determine if, with a number N of eggs, he
can build what he wants?

Input

The input consists of two parts:

• The first part is a line with a single integer T.
• The second part contains T integers, each representing the number N of eggs to be hidden.

Output

Following the same order of input, output T lines with "YES" if the Nth number in the list serves the
purpose or "NO" otherwise.

Example

Input

3

6

10

7

Output

YES

YES

NO

15

Valencia 2025

Python

numLines = int(input())

for _ in range(numLines):

 S = int(input())

 N = (-1 + (1+8*S)**(1/2))/2

 if N == int(N) and N>0:

 print("YES")

 else:

 print("NO")

16

Valencia 2025

8 Happy Pi Day
4 points

Introduction

In a few days it will be March 14th, such date is the annual celebration of the mathematical constant

Pi (𝜋) because it is the 3rd month followed by 14 which are the first three digits of this number. As you

may know Pi is the ratio of the circle's circumference to its diameter and it is an infinite decimal

number. In 2021, Pi calculation reached up to 100 trillion decimal digits. But let's not go that far and

consider only the first hundred decimal digits:

3.14159265358979323846264338327950288419716939937510582097494459230781640628620

89986280348253421170679

We want to explore Pi and look for specific numeric sequences inside the decimal digits. Given a

number sequence of up to 10 digits, can you write a program that will search for this sequence in the

first 100 decimal digits of Pi? Your program should output the position of the first occurrence of the

number sequence in Pi, or -1 if the sequence is not found.

Input

The input is an integer up to 10 digits long.

Output

The output is an integer reporting the position of the first ocurrence starting to count from the

decimal point or -1 if the sequence is not found.

Example 1

Input

14159

Output

1

Example 2

Input

65

Output

7

Example 3

Input

1416

Output

-1

17

Valencia 2025

Python

piDecimals =

".141592653589793238462643383279502884197169399375105820974944592307816406286208

9986280348253421170679"

pattern = input()

#With the find method we can get the position where the pattern is found. If

not, a -1 is returned

position = piDecimals.find(pattern)

print(str(position))

18

Valencia 2025

9 La Barbacoa
4 points

Introduction

As every summer, your friend Georgie has fun cooking meat and vegetables on his barbecue grill.
To do so, there are two kinds of skewers (thin metal sticks of variable length) that hold pieces of food
together while they are being cooked. A vegetarian skewer is a skewer that has only vegetables
(represented by ‘o’). A non-vegetarian skewer is a skewer with at least one piece of meat
(represented by ‘x’).

For example, the grill below has 4 non-vegetarian skewers and 1 vegetarian skewer (the one in the
middle):

--xo--x--ox--
--xx--x--xx--

--oo--o--oo-- − vegetarian skewer
--xx--x--ox--
--xx--x--ox--

Given a barbecue grill, can you write a program that prints the number of vegetarian skewers and
the number of non-vegetarian skewers?

Input

The input consists of variable number of lines, one per skewer. The input ends with the character ‘#’.

Output

The output is a pair of integers: the first is the number of vegetarian skewers, and the second is the
number of non-vegetarian skewers.

Example 1

Input

--xo--x--ox--

--xx--x--xx--

--oo--o--oo--

--xx--x--ox--

--xx--x--ox--

Output

1 4

Example 2

Input

--o-ooo--

--xx--x--xx--

--oo--oo--

--xx--x--ox--

Output

2 2

19

Valencia 2025

Python

Read skewer from input

skewer = input()

Initialize counters

vegetables = 0

nonVegetables = 0

while skewer != "#":

 if skewer.find("x") != -1:

 nonVegetables += 1

 else:

 vegetables += 1

 skewer = input()

print(vegetables, nonVegetables)

20

Valencia 2025

10 Compound interest calculator
5 points

Introduction

You have 1000 € in your bank account. The bank uses your money to lend it to other people and

make a profit. In return, the bank will increase the money in your account by a percentage each year.

This percentage is called an interest rate. The higher it is the more money you will have at the end of

the year.

You want to find out how much money you will have in the future by comparing the interest rate your

bank offers versus other banks. You might end much richer if you move your money to a bank with

higher interest rates, especially in the long term.

To do so, you will use the following compound interest formula to calculate the final money (Mf)

considering your initial money (Mi), the interest rate (r) and the number of years you want to keep the

money in the bank (n).

𝑴𝒇 = 𝑴𝒊 × (𝟏 + 𝒓)𝒏

For example, to calculate the final money after 15 years in a bank that gives you a 5% interest rate

you would have to do the following calculation:

𝑴𝒇 = 𝟏𝟎𝟎𝟎 × (𝟏 + 𝟎. 𝟎𝟓)𝟏𝟓

Input

The input consists of two lines:

• The first line will be the interest rate (r). It will be a positive integer number greater than zero.

• The second line will be the number of years the money will be in this bank (n). It will be a
positive integer number greater than zero.

Output

The output should be the final money you will have in your account (Mf), printed out with 2 decimals
rounded to the nearest hundredth.

Example

Input Output

5 2078.93
15

21

Valencia 2025

Python

def calculate_compound_interest(initial_money, interest_rate, years):

 # Convert interest rate to decimal form

 rate = interest_rate / 100.0

 # Calculate final money using the compound interest formula

 final_money = initial_money * (1 + rate) ** years

 return final_money

Fixed initial money

initial_money = 1000.0

Read inputs

interest_rate = int(input())

years = int(input())

Calculate final money

final_money = calculate_compound_interest(initial_money, interest_rate, years)

Output the result with 2 decimal places

print(f"{final_money:.2f}")

C++

#include <iostream>

#include <cmath>

#include <iomanip>

int main() {

 const double initialMoney = 1000.0; // Fixed initial money

 int interestRate; // Input interest rate as an integer percentage

 int years; // Input number of years

 std::cin >> interestRate;

 std::cin >> years;

 double rate = interestRate / 100.0;

 double finalMoney = initialMoney * std::pow(1 + rate, years);

 // Output the result with 2 decimal places

 std::cout << std::fixed << std::setprecision(2) << finalMoney << std::endl;

 return 0;

}

22

Valencia 2025

11 Ancient Cryptex
5 points

Introduction

In the distant future, a new type of human has come into existence on planet Earth: the so-called

"Homo psychic." You, a renowned Homo psychic, have been tasked with investigating an artifact

from an ancient civilization.

As you wire your psyche around the intricate patterns on the artifact, you discover that to unlock its

secrets, you must break the sigil and passcode. Any mistake in the spell will render the artifact

unusable.

For this task, you have learned that any phrase will suffice. However, the input string must be at least

16 characters long. If the string is shorter than 16 characters, the remaining spaces must be filled

with zeroes. Spaces between words should also be replaced with zeroes. Any characters beyond

16 will be discarded.

Input

The input consists of a string.

Output

The output should be a 4x4 matrix containing the requested string, filling blank spaces with ‘0’.

Example 1

Input

The secret within

Output

T h e 0

s e c r

e t 0 w

i t h i

Example 2

Input

Hello world

Output

H e l l

o 0 w o

r l d 0

0 0 0 0

23

Valencia 2025

Python

def main():

 # Leer la frase de entrada

 input_text = input("")

 # Asegurarse de que no tenga más de 16 caracteres

 if len(input_text) > 16:

 input_text = input_text[:16]

 # Si tiene menos de 16 caracteres, rellenamos con '0'

 input_text = input_text.ljust(16, '0')

 # Crear la matriz 4x4

 matriz = [['' for _ in range(4)] for _ in range(4)]

 # Llenar la matriz con los caracteres de la frase

 index = 0

 for i in range(4):

 for j in range(4):

 # Reemplazar los espacios con '0'

 if input_text[index] == ' ':

 matriz[i][j] = '0'

 else:

 matriz[i][j] = input_text[index]

 index += 1

 # Mostrar la matriz

 for i in range(4):

 print(" ".join(matriz[i]) + " ")

Ejecutar el programa

if __name__ == "__main__":

 main()

24

Valencia 2025

12 Sophie Germain
6 points

Introduction

Sophie Germain was a pioneering French mathematician known for her contributions to number

theory, including her work on prime numbers, particularly those now termed Sophie Germain prime

pairs. She overcame social and gender barriers in her pursuit of mathematical knowledge, leaving a

lasting impact on the field.

A Sophie Germain prime pair is a pair of prime numbers (p, q) such that:

• p is a prime number and

• 2·p + 1 = q is also a prime number.

For example, (2, 5) is a Sophie Germain prime pair because 2 is prime and 2·2 + 1 = 5 is also prime.

Write a program to find out whether there is a Sophie Germain prime pair for a given positive integer.

Input

The input is composed by a p positive integer.

Output

The output will return q if p and q form a Sophie Germain prime pair. Otherwise, the output will be: p

is not a Sophie Germain prime.

Example 1 Example 2

Input Input

2 7

Output Output

5 7 is not a Sophie Germain prime

25

Valencia 2025

Python

import math

def isPrime(n):

 for i in range(2,int(math.sqrt(n))+1):

 if (n%i) == 0:

 return False

 return True

Main program

Read number p from standard input

p = int(input())

Calculate number q

q = 2 * p + 1

Check whether p and q form a Sophie Germain primes pair

if isPrime(p) and isPrime (q):

 print(str(q))

else:

 print(str(p) + " is not a Sophie Germain prime")

26

Valencia 2025

13 New Printer
6 points

Introduction

We are designing a new printer in HP and need your help to print images. Our new printer will use
three inks of colors RGB, meaning Red, Green and Blue.

The printer can print the following colors:

• Red (R)

• Green (G)

• Blue (B)

• Yellow (Y) = Red (R) + Green (G)

• Purple (P) = Blue (B) + Red (R)

• Turquoise (T) = Green (G) + Blue (B)

• White (W) The printer will not print anything for white, as we assume the paper is white.

Given an image represented by a line of 10 characters indicating the colors, such as

RWBYWWWPTW

we need to determine the passes the printer will need to make to print the image. For composed
colors like Yellow, Purple, and Turquoise, the printer will need to make two passes.

When the printer is not printing in a position (because the color is white or not needed in that pass),

we will represent it with an underscore _.

For the input RWBYWWWPTW, the output should be:

R_BR___BG_

___G___RB_

Input

The input will be a single line with the colors to print.

Output

The output will be the number of passes needed and the sequences for each pass.

27

Valencia 2025

Example 1

Input

WWRGBBGRWW

Output

__RGBBGR__

Example 2

Input

WYRGBPTYYW

Output

RRGBBGRR

_G___RBGG_

Python

def print_image(image):

 # Initialize two passes with underscores

 pass1 = ['_'] * len(image)

 pass2 = ['_'] * len(image)

 for i, color in enumerate(image):

 if color == 'R':

 pass1[i] = 'R'

 elif color == 'G':

 pass1[i] = 'G'

 elif color == 'B':

 pass1[i] = 'B'

 elif color == 'Y': # Yellow = Red + Green

 pass1[i] = 'R'

 pass2[i] = 'G'

 elif color == 'P': # Purple = Blue + Red

 pass1[i] = 'B'

 pass2[i] = 'R'

 elif color == 'T': # Turquoise = Green + Blue

 pass1[i] = 'G'

 pass2[i] = 'B'

 elif color == 'W': # White, do nothing

 pass

 pass1_str = ''.join(pass1)

 pass2_str = ''.join(pass2)

 return pass1_str, pass2_str

image = input()

pass1, pass2 = print_image(image)

print(pass1)

if pass2 != "__________" :

 print(pass2)

28

Valencia 2025

14 The Sudoku Redemption Challenge
7 points

Introduction

In a dystopian future where justice is swift and unforgiving, society has turned to an unconventional

means of rehabilitation. Convicted programmers are no longer confined to dark, cold prison cells.

Instead, they are sent to the Algorithm Redemption Facility, where their skills are put to the ultimate

test: solving puzzles that even the most advanced machines fail to crack.

You are one of these programmer convicts, branded as a "red code rogue" for your past

transgressions. Your only hope for freedom lies in your ability to create an efficient algorithm

capable of solving a seemingly simple, yet devilishly constrained problem: a 3x3 Sudoku puzzle.

But there’s a twist.

Each number from 1 to 9 must appear exactly once in the entire grid. The puzzle is partially filled, and

the remaining cells must be completed without violating the rules of Sudoku. You are given a specific

starting grid, and your solution must respect this initial configuration. The Redemption Board

watches your every keystroke, ready to grant your freedom if you succeed—or condemn you to a

lifetime of computational servitude if you fail. This is your chance to prove your genius and earn back

your place in society.

The challenge is clear: write an algorithm that solves the given Sudoku puzzle while ensuring no

number repeats in any row, column, or across the entire grid. Time is limited, and the pressure is

immense. Your fellow developers are counting on you to lead the charge.

Can you rise above your past mistakes, code your way to freedom, and become the hero of your

team? The clock is ticking…

Note: As there are many different solutions. The good one will have the unknown numbers the

lowest to the left and to the top.

Input

The input consists of 9 characters, that could be numbers between 1 and 9 or ‘x’, separated by white
spaces.

Output

The output should be the sudoku solved, as there are many different solutions. To good one will have
the unknown numbers the lowest to the left and to the top.

29

Valencia 2025

Example 1

Input

9 8 7
x 3 x
x x 1

Output

9 8 7
2 3 4
5 6 1

Example 2

Input

x 8 x
x x x
x x x

Output
1 8 2
3 4 5
6 7 9

Python

def leer_matriz():

 matriz = []

 for _ in range(3):

 # Lee una línea, separa los elementos por espacio y los agrega como una

lista de elementos

 linea = input().split()

 matriz.append(linea)

 return matriz

def obtener_numeros_faltantes(matriz):

 # Obtiene los números ya usados en la matriz

 usados = set()

 for fila in matriz:

 for elem in fila:

 if elem != 'x':

 usados.add(int(elem))

 # Los números que faltan (del 1 al 9), excluyendo los que ya están en la

matriz

30

Valencia 2025

 faltantes = [i for i in range(1, 10) if i not in usados]

 # Ordenamos los números faltantes de menor a mayor

 return sorted(faltantes)

def sustituir_x(matriz, numeros_faltantes):

 # Reemplazamos las 'x' por los números faltantes

 idx = 0

 for i in range(3):

 for j in range(3):

 if matriz[i][j] == 'x':

 matriz[i][j] = str(numeros_faltantes[idx])

 idx += 1

def imprimir_matriz(matriz):

 for fila in matriz:

 print(" ".join(fila))

Leer las tres líneas de entrada

matriz = leer_matriz()

Obtener los números que faltan (del 1 al 9) y ordenarlos

numeros_faltantes = obtener_numeros_faltantes(matriz)

Sustituir las 'x' por los números faltantes

sustituir_x(matriz, numeros_faltantes)

Imprimir la matriz final

imprimir_matriz(matriz)

31

Valencia 2025

15 Adler-32
7 points

Introduction

On the planet Zorvak, an advanced civilization of beings known as the Zorvaks have long been

famous for their expertise in mining valuable resources deep within the planet. For years, they have

been collecting minerals and developing technologies to improve their quality of life. However, they

now face a new challenge: data integrity.

The Zorvaks rely on an interplanetary network to store and transmit their mining and resource data.

This information is critical to their mining operations, but due to the vastness of their network and

cosmic interference from nearby galaxies, some of the data may be altered or corrupted during

transmission. To ensure that the data they receive is correct and unmodified, the Zorvaks need to

implement a reliable data integrity verification mechanism.

As a programmer specialized in the interplanetary communications network, you have been tasked

with helping the Zorvaks develop an algorithm that will ensure their data is complete and unaltered.

To achieve this, the algorithm must use a hash type capable of representing a sequence of data in

a compact and efficient way.

The Adler-32 algorithm is ideal for this purpose due to its efficiency and simplicity. This algorithm

generates a unique signature for a set of data, allowing the Zorvaks to verify whether the

information has been altered or corrupted during transmission.

Your mission is to write a program that implements the Adler-32 algorithm. The program will take a

text string (representing the data) as input and return the checksum (unique signature) generated

by the Adler-32 algorithm.

The Adler-32 algorithm works as follows:

The text must be processed in such a way that two different sums are obtained simultaneously: S1

and S2. To do so the ASCII values of the characters of the text are taken and added cumulatively, in

the following way:

S1 = 1 + D1 + D2 + ... + Dn (mod 65521)

S2 = 0 + (1 + D1) + (1 + D1 + D2) + ... + (1 + D1 + D2 + ... + Dn) (mod 65521) = n×D1

+ (n−1)×D2 + (n−2)×D3 + ... + Dn + n (mod 65521)

Both S1 and S2 are then reduced using the modulus 65521 to avoid data overflow. Finally, the value

of Adler-32 is calculated by combining S2 with S1, and this value is returned as the checksum:

32

Valencia 2025

Checksum = (S2 × 65536) + S1

Let's see an example: The Adler-32 sum of the ASCII string "Codewars" would be calculated as

follows:

Character ASCII code S1 S2________

 C 67 1 + 67 = 68 0 + 68 = 68

 o 111 68 + 111 = 179 68 + 179 = 247

 d 100 179 + 100 = 279 247 + 279 = 526

 e 101 279 + 101 = 380 526 + 380 = 906

 w 119 380 + 119 = 499 906 + 499 = 1405

 a 97 499 + 97 = 596 1405 + 596 = 2001

 r 114 596 + 114 = 710 2001 + 710 = 2711

 s 115 710 + 115 = 825 2711 + 825 = 3536

S1 = 825 mod 65521 = 825

S2 = 3536 mod 65521 = 3536

Output = (3536 * 65536) + 825 = 231735296 + 825 = 231736121

Input

The input consists of a text representing the data that the Zorvaks wish to verify.

Output

The output should be an integer numeric value representing the integrity signature of the text,
according to the steps described.
Note: The algorithm must return unsigned integer positive values.

33

Valencia 2025

Example 1

Input

Wikipedia

Output

300286872

Example 2

Input

Codewars

Output

231736121

Example 3

Input

To infinity and beyond!

Output

1705445475

Python

def adler32(text):

 # Constants for Adler-32

 MOD_ADLER = 65521

 s1 = 1

 s2 = 0

 for char in text:

 # Update s1 and s2 according to the Adler-32 formula

 s1 = (s1 + ord(char)) % MOD_ADLER

 s2 = (s2 + s1) % MOD_ADLER

print (char, "--> ", ord(char), " --> ",s1, " --> ",s2)

 checksum = (s2 << 16) | s1

 return checksum

text = input().strip()

Calculate the Adler-32 checksum for the given text

checksum = adler32(text)

Output the checksum

print(checksum)

34

Valencia 2025

16 TriPizza
7 points

Introduction

Have you ever heard of "Triggy's Pizzeria"? Triggy, the owner, is known for creating the best TriPizza

(triangular-shaped pizzas). Programmers loved his pizzas so much that they wanted to calculate the

area of these peculiar pizzas. However rulers are forbidden in the pizzeria, so there is no way to find

out the lengths of the sides of the pizzas. Fortunately your mathematician friend brought a

centimeter coordinate plane printed. After placing the pizza over the coordinate plane it was

possible to find the X, Y points corresponding to the vertices of the triangle.

To help finding out the area you can count on Hero of Alexandria. He was a Greek mathematician

that derived the formula for the calculation of the area of a triangle using the length of all three sides:

𝑨𝒓𝒆𝒂 = √𝒔(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄)

where s is the semi-perimeter of the triangle and a, b and c are the lengths of its sides.

Can you code a program to calculate the area of a TriPizza?

Input

The coordinates will be provided in three lines, where each line has a pair of integer values

representing coordinates (x, y) that match a triangle vertex.

Output

The output is the area of the TriPizza in squared centimeters with one single decimal.

Example

Input

-4 0

2 0

0 4

Output

12.0

35

Valencia 2025

Python

import math

Read the three points

x1, y1 = input().split()

x2, y2 = input().split()

x3, y3 = input().split()

Convert string to float

x1 = float(x1)

x2 = float(x2)

x3 = float(x3)

y1 = float(y1)

y2 = float(y2)

y3 = float(y3)

Find out the triangle segments

a = math.sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2))

b = math.sqrt(pow(x3 - x2, 2) + pow(y3 - y2, 2))

c = math.sqrt(pow(x3 - x1, 2) + pow(y3 - y1, 2))

Calculate the semiperimeter

s = (a + b + c) / 2

Apply the Heron's formula to find out the area

area = math.sqrt(s*(s-a)*(s-b)*(s-c))

Print out just one decimal

print(f"{area:.1f}")

36

Valencia 2025

17 The riddle of the Golden Numbers
7 points

Introduction

In the distant kingdom of Numeria, wise mathematicians believed that prime numbers were

fragments of an ancient language connecting mortals to the secrets of the universe. These

numbers, known as the Golden Numbers, held special significance, and it was said that their sum

would reveal the key to unlocking a powerful relic called the Orb of Truth.

However, the Orb could only be activated if the exact sum of all the Golden Numbers less than or

equal to a specific number, N, was found. No one knew how to calculate this sum accurately, as

manual calculations were tedious and error-prone. The Orb remained still and mysterious in the

center of the Temple of Eternal Sequences.

The Challenge of the Young Programmer

Young apprentice named Auron was passionate about solving problems using modern tools. While

the wise mathematicians debated and wrote endless lists of numbers, Auron had a revolutionary

idea: to use the newly invented calculation machine to decipher the riddle.

Auron devised a method to identify whether a number was "golden" (a prime). He also created a

system to sum them quickly. The key was to reduce the time spent manually reviewing each number.

Acting as Auron, your task is to create an application that takes a number as input and returns the

exact sum of all prime numbers less than the specified number.

Input

The input consists of a positive integer

Output

The output should be the golden number

Example 1

Input

10

Output

17

Example 2

Input

20

Output

77

37

Valencia 2025

Python

def es_primo(num):

 if num < 2:

 return False

 for i in range(2, int(num**0.5) + 1):

 if num % i == 0:

 return False

 return True

def suma_primos(N):

 if N <= 2:

 print(f"0")

 return

 suma = 0

 for i in range(2, N + 1):

 if es_primo(i):

 suma += i

 print(f"{suma}")

Solicitar entrada al usuario

N = int(input(""))

suma_primos(N)

38

Valencia 2025

18 Single Neuron
8 points

Introduction

Have you heard about Artificial Intelligence and Deep Learning? Technologies like ChatGPT are

powered by Neural Networks (NN), a powerful tool in the AI field. Neural Networks are made up of

connected neurons, which process information to generate insights. While super large Neural

Networks can understand and emulate human-like conversations, the foundation of these systems

is the single neuron.

In this problem, you are tasked to program a single neuron of a Neural Network. A neuron takes

multiple inputs, processes them using weights and biases, and applies an activation function to

produce an output.

The activation function can be as simple as a linear function, or more complex as the sigmoid

function. Find below examples of activation functions.

39

Valencia 2025

The Single Neuron must accomplish the following requirements:

• Must be able to accept from 1 to 100 inputs.

• The number of weights must equal the number of inputs

To calculate the weighted sum to be used in the function, you must add the multiplication of each
input with its corresponding weight and add the bias:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑢𝑚 = (∑ 𝑖 ∗ 𝑤) + 𝑏𝑖𝑎𝑠

Input

The input of this problem consists in 4 lines:

• First line is the neuron input.

• Second line are neuron weights.

• Third line corresponds the neuron bias.

• Fourth line corresponds to the activation function. The allowed activation functions are:
identity, relu, sigmoid.

All numeric inputs may contain decimal values.

Output

The single neuron will output the result of the weighted sum and the function activation.

Example 1

Input
3,10,-4
0.1,0.2,0.7
1
identity
Output
Output: 0.50

Example 2

Input
3,10,-4
0.1,0.2,0.7
2
relu
Output
Output: 1.50

40

Valencia 2025

Python

import sys

import math

def identity(x):

 return x

def relu(x):

 return max(0, x)

def sigmoid(x):

 return 1 / (1 + math.exp(-x))

Read inputs

line = input().strip()

line2 = line.split(",")

inputs = list(map(float, line2))

#print(f'line={line}, line2={line2}, inputs={inputs}')

line = input().strip()

line2 = line.split(",")

weights = list(map(float, line2))

#print(f'line={line}, line2={line2}, weights={weights}')

bias = float(input().strip())

activation_function = input().strip()

Ensure the number of inputs and weights are the same

if len(inputs) != len(weights):

 print("Error: The number of inputs must be equal to the number of weights.")

 sys.exit(1)

Compute the weighted sum

weighted_sum = sum(i * w for i, w in zip(inputs, weights)) + bias

if activation_function == "identity":

 output = identity(weighted_sum)

elif activation_function == "relu":

 output = relu(weighted_sum)

elif activation_function == "sigmoid":

 output = sigmoid(weighted_sum)

else:

 print("Error: Unsupported activation function.")

 sys.exit(1)

Output the result

print(f'Output: {output:.2f}')

41

Valencia 2025

19 Vigenère Cipher Encoder
8 points

Introduction

During World War II, coded messages were often used to keep sensitive information secret. One

such method of encoding messages is the Vigenère cipher. This cipher uses a keyword to encrypt

a message by shifting the letters of the alphabet. The result is a message that appears scrambled

and is difficult to read without the correct keyword.

In this problem, you will create a program to encrypt a plaintext message using the Vigenère cipher.

The encryption process involves repeating the keyword to match the length of the message and

shifting each letter according to the corresponding letter in the keyword. The output is an encrypted

message that appears scrambled to anyone without the keyword.

Keyword: LEMON
Message: ATTACKATDAWN

A (0) + L (11) → L (11)
T (19) + E (4) → X (23)
T (19) + M (12) → F (5)

(since 31 % 26 = 5)
A (0) + O (14) → O (14)
C (2) + N (13) → P (15)
K (10) + L (11) → V (21)
A (0) + E (4) → E (4)
T (19) + M (12) → F (5)

(since 31 % 26 = 5)
D (3) + O (14) → R (17)
A (0) + N (13) → N (13)
W (22) + L (11) → H (7)

(since 33 % 26 = 7)
N (13) + E (4) → R (17)

Input

The input will be provided in the following format:

• The first line contains the keyword, consisting of uppercase letters (A-Z).

• The second line contains the plaintext message, also consisting of uppercase letters (A-Z).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A T T A C K A T D A W N

0 19 19 0 2 11 0 19 3 0 22 13

L E M O N L E M O N L E

+ 11 4 12 14 13 11 4 12 14 13 11 4

MOD(26) 11 23 31 14 15 22 4 31 17 13 33 17

11 23 5 14 15 22 4 5 17 13 7 17

L X F O P V E F R N H R

42

Valencia 2025

Output

The output should be a single line containing the encrypted message. Ensure the output is correctly

formatted, as the judge will compare your output with the expected output using exact matching.

Example 1 Example 2

Input Input

LEMON
ATTACKATDAWN

KEY
HELLOAGAIN

Output Output

LXFOPVEFRNHR RIJVSYQEGX

Python

keyword = str(input())

message = str(input())

alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

keyword = keyword.upper()

message = message.upper()

encrypted_message = []

keyword_length = len(keyword)

for i, char in enumerate(message):

 if char in alphabet:

 key_char = keyword[i % keyword_length]

 key_shift = alphabet.index(key_char)

 plain_index = alphabet.index(char)

 enc_index = (plain_index + key_shift) % 26

 encrypted_message.append(alphabet[enc_index])

 else:

 encrypted_message.append(char) # Non-alphabetic characters are not

changed

print(''.join(encrypted_message))

43

Valencia 2025

20 A Polynomial Spell
10 points

Introduction

In the magical land of Algebrania, the kingdom’s prosperity depends on the harmony of its

polynomial spells. The Royal Mathemagician, tasked with maintaining this harmony, has discovered

an ancient scroll that reveals a powerful spell for multiplying polynomials. However, the scroll is

incomplete, and the Mathemagician needs your help to decipher the missing part.

You are given two polynomials, each represented by a list of coefficients. Your task is to write a

program that computes the product of these two polynomials and returns the resulting polynomial

in the same format. By doing so, you will help restore balance to the kingdom and ensure its

continued prosperity.

Input

The input consists of two lines. Each line contains a space-separated list of integers representing

the coefficients of a polynomial. The first integer corresponds to the coefficient of the highest

degree term, and the last integer corresponds to the constant term.

Output

The output should be a single line containing a space-separated list of integers representing the

coefficients of the resulting polynomial after multiplication.

In the example 1, the first polynomial is (3x2 + 2x + 1) and the second polynomial is (x2 - 1).
So, the product of these polynomials is (3x4 + 2x3 - 2x2 - 2x - 1).

Example 1

Input

3 2 1

1 0 -1

Output

3 2 -2 -2 -1

Example 2

Input

-5 0

4 -2

Output

-20 10 0

44

Valencia 2025

Python

Reading polynomial coefficients from the user

firstPol = input().split()

secondPol = input().split()

Finding out the grades of the polynomials

firstGrade = len(firstPol) - 1

secondGrade = len(secondPol) - 1

resGrade = firstGrade + secondGrade

Creating a list for the result polynomial

resPol = [0] * (resGrade + 1)

Multiplying the polynomials

for i in range(len(firstPol)-1, -1, -1):

 for j in range(len(secondPol)-1, -1, -1):

 resPol[i+j] += int(firstPol[i]) * int(secondPol[j])

Print the result polynomial

print(*resPol)

45

Valencia 2025

21 Viking Ascent
10 points

Introduction

Young Vikings, to entertain themselves while their elders were at war, played this ancient game. It

consisted of each player rolling dice a certain number of times, which they defined before starting

to play. The first roll of each player's dice always added to their score, but subsequent rolls were

added if the previous number was even and subtracted if it was odd. The lowest value a score can

have at any time is zero. The player with the most points at the end of the rounds wins.

If several players end up with the same score, the winner is the one who has reached the highest

number of points in any round.

Write a program that calculates each player score and shows which one is the winner.

Input

The input consists of multiple lines, with numbers separated by commas, representing the rolls of
each player.

Output

The output should be a string containing the winner’s number and score, formatted as: “Player x is
the winner with y points”.

Example

In this example, these are the totals:
• Player 1: 7 total points, reaching a maximum of 13 points.
• Player 2: 5 total points, reaching a maximum of 21 points.
• Player 3: 10 total points, reaching a maximum of 13 points.

Input

1,3,4,2,6,5,6,3,4,1

2,4,6,4,5,5,5,3,4,1

1,4,5,3,2,4,6,3,1,2

Output

Player 3 is the winner with 10 points

46

Valencia 2025

Python

class User:

 def __init__(self):

 self.dices = 0 # Número de dados lanzados

 self.points = 0 # Puntos actuales

 self.max = 0 # Puntos máximos alcanzados

def calculate_user(line):

 user = User()

 tokens = line.split(",")

 l_substract = False

 for token in tokens:

 user.dices += 1 # Incrementar el contador de dados

 value = int(token.strip()) # Convertir el token a número entero

 if l_substract:

 user.points -= value

 if user.points < 0:

 user.points = 0 # No permitir puntos negativos

 else:

 user.points += value # Sumar los puntos

 # Cambiar la lógica de restar/sumar dependiendo si el valor es par o

impar

 l_substract = value % 2 != 0

 # Actualizar el puntaje máximo si es necesario

 if user.points > user.max:

 user.max = user.points

 return user

def main():

 lines = []

 users = []

 # Leer múltiples líneas hasta que se ingrese una línea vacía

 while True:

 line = input("")

 if not line: # Si la línea está vacía, salir del bucle

 break

 lines.append(line)

 users.append(calculate_user(line))

47

Valencia 2025

 # Verificar cuál línea tiene más puntos

 max_points = -1

 max_line_index = -1

 for i, user in enumerate(users):

 if user.points > max_points:

 max_points = user.points

 max_line_index = i

 # Mostrar el resultado

 if max_line_index != -1:

 print(f"Player {max_line_index + 1} is the winner with

{users[max_line_index].points} points")

 else:

 print("No se ingresaron líneas válidas.")

if __name__ == "__main__":

 main()

48

Valencia 2025

22 Undo-Redo Action
12 points

Introduction

Imagine you’re developing a text editor and need to implement robust undo and redo functionalities.

Your task is to create a program that efficiently handles a sequence of operations, allowing users

to undo their last action or redo it if needed. This feature is crucial for enhancing user experience by

providing flexibility in editing.

Input

The input will consist of a sequence of commands. The commands can be:

• A string containing a line of text you want to write.

• The word "undo" to revert the last action if any.

• The word "redo" to repeat the last undone action if any.

• The character ‘#’ to print the ending result and stop the inputs.

Output

The output should be the resulting string after performing all the actions.

Example 1

Input

Welcome to Codewars

2024

undo

2025

Output

Welcome to Codewars 2025

Example 2

Input

Welcome

Codewars

undo

to

redo

Output

Welcome to Codewars

49

Valencia 2025

Python

class UndoRedoStack:

 def __init__(self):

 self.history = []

 self.redo_stack = []

 self.current_state = ""

 def perform(self, action):

 self.history.append(action)

 self.update_state()

 def undo(self):

 if self.history:

 action = self.history.pop()

 self.redo_stack.append(action)

 self.update_state()

 def redo(self):

 if self.redo_stack:

 action = self.redo_stack.pop()

 self.history.append(action)

 self.update_state()

 def update_state(self):

 self.current_state = " ".join(self.history)

 def get_state(self):

 return self.current_state

stack = UndoRedoStack()

while True:

 command = input().strip()

 if command == "#":

 print(stack.get_state())

 break

 elif command == "undo":

 stack.undo()

 elif command == "redo":

 stack.redo()

 else:

 stack.perform(command)

50

Valencia 2025

23 Gladiators Clash
12 points

Introduction

Two groups of gladiators are fighting over a territory. To avoid a large-scale battle, each group
decides to send the same number, 𝑛, of their best gladiators. Each group leader submits a list of size
𝑛 representing the power of each of their gladiators.

In each round, one gladiator fights against another. The gladiator with less power is defeated, while
the one with more power wins but loses part of their strength (equal to the power of the defeated
gladiator) for future battles. Gladiators fight in the order they are listed (from left to right).

The group with any gladiators still standing with power at the end will be victorious. If all gladiators in
both groups have 0 power at the end, the result is a draw. Similarly, if both teams choose not to send
any fighters (an empty list, []), the result is also a draw.

Input

Two lines, each containing a list of the power of each fighter.

Output

The winner and a list of the remaining power for each fighter in the winning group after the battle.

Example 1 Example 2 Example 3

Input

[2, 3, 4]
[3, 5, 6]

Input

[2, 3, 4, 5]

[4, 3, 2, 5]

Input

[10, 1, 8]
[2, 3, 4]

Output

Group 2 Wins! [0, 0, 5]

Output

Draw!

Output

Group 1 Wins! [1, 1, 8]

51

Valencia 2025

Python

group1 = input()

group2 = input()

index1 = 0

index2 = 0

Convert the input strings to lists of integers

size = len(group1)

if size>2:

 group1 = [int(x) for x in group1[1:-1].split(",")]

 group2 = [int(x) for x in group2[1:-1].split(",")]

 size = len(group1)

else:

 size=0

Loop through the fighters of both groups

while index1 < size and index2 < size:

 if group1[index1] > group2[index2]:

 # If group1's fighter has more power, they win this round

 # Reduce group1's fighter power by group2's fighter's power

 group1[index1] -= group2[index2]

 # Set group2's fighter's power to 0 (they are defeated)

 group2[index2] = 0

 # Move to the next fighter in group2

 index2 += 1

 elif group2[index2] > group1[index1]:

 group2[index2] -= group1[index1]

 group1[index1] = 0

 index1 += 1

 else:

 group1[index1] = 0

 group2[index2] = 0

 index1 += 1

 index2 += 1

Determine the winner based on which group has remaining fighters

if index1 < index2:

 print("Group 1 Wins! ", group1)

elif index2 < index1:

 print("Group 2 Wins! ", group2)

else:

 print("Draw!")

52

Valencia 2025

24 EHB League
13 points

Introduction

The college e-handball league (EHB) enters its final phase, with the top eight teams battling for the

championship ring awarded to the number 1 team in the internal collegiate e-handball league. In this

phase (the quarterfinals), teams from different conferences (West and East) will face each other,

with four teams in each conference.

The organization seeks the cooperation of all teams participating in CodeWars 2025 tournament to

proceed with the draw. Teams will be ordered alphabetically within each conference. Then, the first

team from each conference will play against each other, the second team from each conference

will play against each other, and so on.

However, there is still one step remaining: associating a date with each match. The quarterfinal

phase will be played over four days: Monday, Tuesday, Thursday, and Friday. (Note: There will be no

games on Wednesdays.) One match will be played each day. The pairing of each match with its

corresponding day will be based on the position of the first letter of each team's name in the

alphabet. Therefore, the match scheduled for Monday will involve the teams whose sum of the

positions of their first letters is closest to the beginning of the alphabet.

The teams whose first letters appear in second position alphabetically will play on Tuesday, and so

on for the third and fourth positions, which will play on Thursday and Friday, respectively.

For example, let's imagine that Madrid plays against Barcelona and Valencia plays against Bilbao.

The letter positions are as follows:

• Barcelona (B = 2) vs. Madrid (M = 13), giving a total of 2 + 13 = 15.

• Valencia (V = 23) vs. Bilbao (B = 2), giving a total of 23 + 2 = 25.

In this case, the match with the lowest sum (15) will be played on Monday, so the game between

Barcelona and Madrid will take place on Monday, and the game between Valencia and Bilbao will

take place on Tuesday.

You are asked to develop a program that receives the list of the eight participating teams along with

their conference and formalizes the quarterfinal draw.

53

Valencia 2025

Input

The input data will consist of a single line containing:
• Team name.
• Conference to which it belongs (Este-Oeste, North South, East-West).... Whatever is the

conference, but always there will be only two alternatives
Example: Team1-Conf1, Team2-Conf2, Team3-Conf1... until 8 teams are introduced.

Output

The output will consist of three lines with the following messages:
1. Conference XXX (The first one received in the input): Alphabetically ordered list of teams

belonging to this conference, separated by commas and a space.
2. Conference YYY (The second one received in the input): Alphabetically ordered list of teams

belonging to this conference, separated by commas and a space.
3. Pairings: Alphabetically ordered list of pairings (match day), separated by commas and a

space.
Each line should display the respective conference and match pairings clearly.
See examples for clarity and spacing issues

Example 1

Input

Captors-Este, Bullets-Oeste, Wizards-Este, Parrots-Oeste, Flippers-Oeste,

Goals-Este, Sockets-Oeste, Lentils-Este

Output

Conference Este: Captors, Goals, Lentils, Wizards
Conference Oeste: Bullets, Flippers, Parrots, Sockets
Pairings: Captors-Bullets (Monday), Goals-Flippers (Tuesday), Lentils-Parrots
(Thursday), Wizards-Sockets (Friday)

Example 2

Input

Unixes-North, HackersLove-North, GigabyteTM-South, Anonymous-North,

CodeWarriors-South, ErrorsTeam-South, Mandalorians-North, Devils-South

Output

Conference North: Anonymous, HackersLove, Mandalorians, Unixes
Conference South: CodeWarriors, Devils, ErrorsTeam, GigabyteTM
Pairings: Anonymous-CodeWarriors (Monday), HackersLove-Devils (Tuesday),
Mandalorians-ErrorsTeam (Thursday), Unixes-GigabyteTM (Friday)

54

Valencia 2025

Python

def parse_input(input_string: str) -> list:

 """Parse input string into list of team and conference tuples."""

 teams_data = []

 teams = input_string.strip().split(',')

 # Check for uniqueness of starting letters

 first_letters = set()

 for team in teams:

 try:

 team_name, conference = team.strip().split('-')

 team_name = team_name.strip()

 conference = conference.strip()

 # Check if the first letter of the team name is unique

 first_letter = team_name[0].upper()

 if first_letter in first_letters:

 print(f"Error: Team '{team_name}' starts with the same letter as

another team.")

 return []

 first_letters.add(first_letter)

 teams_data.append((team_name, conference))

 except ValueError:

 print(f"Error: Invalid input format for team '{team}'. Expected

'team-conference'.")

 return []

 return teams_data

def create_match_schedule(teams_data: list) -> None:

 """Creates and prints match schedule for teams from two conferences."""

 # Separate teams by conference

 conference_teams = {}

 for team, conference in teams_data:

 if conference not in conference_teams:

 conference_teams[conference] = []

 conference_teams[conference].append(team)

 # Ensure there are exactly two distinct conferences

 if len(conference_teams) != 2:

 print("Error: The input must contain exactly two distinct conferences.")

 return

55

Valencia 2025

 # Extract conference names and teams

 conference_names = list(conference_teams.keys())

 conference1, conference2 = conference_names[0], conference_names[1]

 # Sort teams alphabetically in each conference

 teams1, teams2 = sorted(conference_teams[conference1]),

sorted(conference_teams[conference2])

 # Print conferences with sorted teams

 print(f"Conference {conference1}: {', '.join(teams1)}")

 print(f"Conference {conference2}: {', '.join(teams2)}")

 # Handle case where the number of teams in each conference is not equal

 min_teams = min(len(teams1), len(teams2))

 matches = []

 # Create matches by pairing teams from both conferences

 for i in range(min_teams):

 matches.append((teams1[i], teams2[i]))

 if len(teams1) > len(teams2):

 print(f"Warning: {len(teams1) - len(teams2)} teams from {conference1}

will not have an opponent.")

 elif len(teams2) > len(teams1):

 print(f"Warning: {len(teams2) - len(teams1)} teams from {conference2}

will not have an opponent.")

 # Calculate letter scores and assign days

 match_scores = []

 for team1, team2 in matches:

 # Convert first letters to their position in the alphabet (1-based)

 score = (ord(team1[0].upper()) - 64) + (ord(team2[0].upper()) - 64)

 match_scores.append((score, team1, team2))

 # Sort matches by score

 match_scores.sort(key=lambda x: x[0])

 # Assign days to matches

 days = ["Monday", "Tuesday", "Thursday", "Friday"]

 # Create pairings string

 pairings = []

 for i, (score, team1, team2) in enumerate(match_scores):

 if i < len(days):

 pairings.append(f"{team1}-{team2} ({days[i]})")

 else:

56

Valencia 2025

 pairings.append(f"{team1}-{team2} (Additional Day)")

 # Print pairings

 print(f"Pairings: {', '.join(pairings)}")

def main():

 """Main function to drive the program."""

 # Get input from user

 input_string = input("")

 teams_data = parse_input(input_string)

 # Only proceed if input is valid (no empty list returned)

 if teams_data:

 create_match_schedule(teams_data)

if __name__ == "__main__":

 main()

57

Valencia 2025

25 Ancient Time Traveler
13 points

Introduction

As a time traveler, you find yourself stranded in ancient Rome during one of its most pivotal
moments in history. The only way to prove your allegiance and earn the trust of the Roman Senate,
besides speaking Latin, is to master their numeric system. Without this, you risk being labeled an
outsider—or worse, a spy sent by their enemies.

To gain the Senate’s trust, you must write a program capable of:

• Converting decimal numbers into Roman numerals, to speak the language of the Empire’s
accounts and decrees.

• Validating Roman numerals, ensuring that they adhere to the rules of the Roman numeric
system, as even a single mistake could reveal your foreign origins.

• Translating Roman numerals back into decimal numbers, so you can accurately decipher
ancient texts and military orders.

Rules of the Roman Numeric System:

Roman numerals are formed using the following symbols:

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000

And numbers are created following some rules:

• Smaller values that follow larger values are added:

VI = 5 + 1 = 6

XII = 10 + 1 + 1 = 12

• A smaller value that precedes a larger value is subtracted:

IV = 5 - 1 = 4

IX = 10 - 1 = 9

• No symbol may be repeated more than three times consecutively.

III = 3 is valid, but IIII is not

58

Valencia 2025

• Only specific combinations are allowed for subtraction:

I precedes V or X

X precedes L or C

C precedes D or M

The program will allow to:

• Translate a decimal number (1-3999) into its Roman numeral equivalent.

• Translate a roman number into decimal equivalent.

Input

The input consists of a single line, that can a numeric value or an upper-case text. If the input is a
numeric value, the expected action is to convert this number into roman numbers. The number will
be a positive integer lower than 4000. If the input is a text value, the expected output is a positive
numeric decimal value.

Output

The output should be a numeric value or an upper-case text with the appropriate roman equivalent.
It can be also ERROR if the numeric value is higher than 3999 or the text representing the roman
number is incorrectly written.

Example 1 Example 3 Example 5

Input

1990

Input

4000

Input

XXXX

Output

MCMXC

Output

ERROR

Output

ERROR

Example 2 Example 4

Input

1234

Input

MCMI

Output

MCCXXXIV

Output

1901

59

Valencia 2025

Python

import re

def int_to_roman(num):

 if num <= 0 or num >= 4000:

 return "ERROR"

 val = [

 1000, 900, 500, 400,

 100, 90, 50, 40,

 10, 9, 5, 4,

 1

]

 syb = [

 "M", "CM", "D", "CD",

 "C", "XC", "L", "XL",

 "X", "IX", "V", "IV",

 "I"

]

 roman_num = ''

 i = 0

 while num > 0:

 for _ in range(num // val[i]):

 roman_num += syb[i]

 num -= val[i]

 i += 1

 return roman_num

def roman_to_int(roman):

 # Regular expression to validate a correct Roman numeral

 roman_pattern = r"^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$"

 # Validate if the Roman numeral string matches the pattern

 if not re.match(roman_pattern, roman):

 return "ERROR"

 roman_dict = {

 'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100,

 'D': 500, 'M': 1000

 }

 total = 0

 prev_value = 0

 for char in reversed(roman):

 if char not in roman_dict:

60

Valencia 2025

 return "ERROR"

 value = roman_dict[char]

 if value < prev_value:

 total -= value

 else:

 total += value

 prev_value = value

 return total

def process_input(input_value):

 # Check if the input is numeric

 if input_value.isdigit():

 num = int(input_value)

 if 0 <= num <= 3999:

 return int_to_roman(num)

 else:

 return "ERROR"

 # Check if the input is a valid Roman numeral

 elif input_value.isalpha() and input_value.isupper():

 return roman_to_int(input_value)

 else:

 return "ERROR"

Test the function with some examples

text=input("")

print(process_input(text))

61

Valencia 2025

26 The Automatic Coach
13 points

Introduction

As it is well known, new technologies combined with statistics are the future of any sport. We were
asked by a futbasket team (a new sport we have just invented) to develop a program that
determines the line up for each game based on the knowledge of each player's skills.

The skills are as follows:
• Near shooting
• Long-range shooting
• Passing
• Dribbling
• Defense
• Attack

Each player will have a value between 0 and 10 for each skill. Using these values, we must determine
the best possible line up by selecting one player for each position. Each position has associated
coefficients for each skill. The positions and their associated coefficients are as follows:

Skill Guard Shooting Guard Small Forward Power Forward Center

Near Shooting 0 0 0.2 0.4 0.2

Long-range Shooting 0.2 0.45 0.3 0 0

Passing 0.45 0.15 0 0 0

Dribbling 0.15 0.35 0.3 0.05 0

Defense 0.2 0.05 0.1 0.25 0.3

Attack 0 0 0.1 0.3 0.5

Input

The input data will consist of several lines. The first line will contain the name of the team. The second
will be an integer, N, the number of players on the team. Then, there will be N lines with data for each
player, following this structure:

• The first part of each line contains the player's name.
• The following six integers represent the player's ratings for the six skills listed above (each

value between 0 and 10).
The team’s name and the number of players will be enclosed in angle brackets (< and >), as will the
player names and their skill values. The program should process this data and calculate the best
possible squad by selecting players for each position in the following order:

1. Best Guard
2. Best Shooting Guard
3. Best Small Forward
4. Best Power Forward
5. Best Center

62

Valencia 2025

Once the line up is obtained, the overall team rating should be calculated as an average of the
ratings of the players in each position. This rating will range from 0 to 10 and should be rounded to
the nearest whole number (without decimal places).

Output

With this data, the program should display a single line with following result on the screen: “Line up of
teamName: Guard Name, Shooting Guard Name, Small Forward Name, Power Forward Name,
Center Name. Qualification teamValue.” Where teamName will be the name of the team,
PointGuardName, ShootingGuardName, etc will be the names of the players chosen for each
position followed by the overall team qualification.

Example 1

Input

<Barsa>

<7>

<TerStegen 8 10 8 9 8 7>

<Lewandowski 10 6 7 7 9 10>

<Rafinha 9 10 8 9 8 9>

<Pedri 10 4 4 5 9 10>

<LamineYamal 6 9 10 10 8 4>

<Gavi 5 10 8 10 7 4>

<Casado 7 10 6 4 5 8>

Output

Line up of Barsa: LamineYamal, Gavi, Rafinha, Lewandowski, Pedri. Qualification 9.

Example 2

Input

<Madrid>

<8>

<Vinicius 8 10 8 9 8 7>

<Carbajal 7 10 6 4 5 8>

<Mbappe 10 6 7 7 9 10>

<Modric 9 10 8 9 8 9>

<Guler 6 9 10 10 8 4>

<Asencio 5 10 8 10 7 4>

<Bellingham 10 4 4 5 9 10>

<Camavinga 5 8 10 9 9 4>

Output

Line up of Madrid: Guler, Asencio, Modric, Mbappe, Bellingham. Qualification 9.

63

Valencia 2025

Python

def calcular_calificacion(jugador, coeficientes):

 """

 Calcula la calificación total de un jugador para una posición dada,

basándose

 en las habilidades del jugador y los coeficientes correspondientes.

 """

 calif=0

 for i in range(6): # Suma ponderada de habilidades

 calif=calif+jugador[i]*coeficientes[i]

print (jugador[i], " * ", coeficientes[i] , " = ", calif)

 #calificacion = sum(jugador[i] * coeficientes[i] for i in range(6)) # Suma

ponderada de habilidades

 #return calificacion

 #print (calif)

 return calif

def main():

 # Coeficientes por cada habilidad para las posiciones

 coeficientes = {

 'POINT GUARD': [0, 0.2, 0.45, 0.15, 0.2, 0],

 'SHOOTING GUARD': [0, 0.45, 0.15, 0.35, 0.05, 0],

 'SMALL FORWARD': [0.2, 0.3, 0, 0.3, 0.1, 0.1],

 'POWER FORWARD': [0.4, 0, 0, 0.05, 0.25, 0.3],

 'CENTER': [0.2, 0, 0, 0, 0.3, 0.5]

 }

 # Lectura de datos

 team_name = input().strip()[1:-1] # Eliminar los signos '<' y '>'

 num_jugadores = int(input().strip()[1:-1]) # Número de jugadores, quitar

'<' y '>'

 jugadores = []

 jugadores2 = []

 for _ in range(num_jugadores):

 # Lectura de cada jugador

 datos = input().strip()[1:-1].split() # Eliminar los signos '<' y '>'

 nombre = datos[0]

 habilidades = list(map(int, datos[1:])) # Convertir las habilidades en

enteros

 jugadores.append((nombre, habilidades))

 jugadores2.append((nombre, habilidades))

 # Alineación vacía para los jugadores seleccionados en cada posición

 alineacion = {

64

Valencia 2025

 'POINT GUARD': None,

 'SHOOTING GUARD': None,

 'SMALL FORWARD': None,

 'POWER FORWARD': None,

 'CENTER': None

 }

 # Buscar el mejor jugador para cada posición

 for posicion in alineacion:

 mejor_calificacion = -1

 mejor_jugador = None

 for jugador in jugadores:

 nombre, habilidades = jugador

 #print("calculamos habilidades de ", nombre)

 calificacion = calcular_calificacion(habilidades,

coeficientes[posicion])

 if calificacion > mejor_calificacion:

 mejor_calificacion = calificacion

 mejor_jugador = nombre

 alineacion[posicion] = mejor_jugador

 # Eliminar el jugador seleccionado de la lista de jugadores para no

repetirlo

 jugadores = [j for j in jugadores if j[0] != mejor_jugador]

 # Calcular la calificación global del equipo

 calificacion_equipo = 0

 for posicion in alineacion:

 nombre = alineacion[posicion]

 for jugador in jugadores2:

 #print (nombre)

 #print(jugador[0])

 #print("--")

 if jugador[0] == nombre:

 habilidades = jugador[1]

 calificacion_equipo += calcular_calificacion(habilidades,

coeficientes[posicion])

 #print(calificacion_equipo)

 break

 # Calificación global redondeada a un valor entero entre 0 y 5

 calificacion_equipo = round(calificacion_equipo / 5)

 # Imprimir la alineación y la calificación

 #alineacion_str = ", ".join(alineacion[posicion] for posicion in alineacion)

 tmp_array = [alineacion[posicion] for posicion in alineacion]

 tmp_array.sort() # Ordenar alfabéticamente

65

Valencia 2025

 # Crear la cadena final

 alineacion_str = ", ".join(tmp_array)

 print(f"Alignment of {team_name}: {alineacion_str}. Qualification

{calificacion_equipo}.")

if __name__ == "__main__":

 main()

66

Valencia 2025

27 LaGrange’s Four-Square
13 points

Introduction

This theorem states: any positive integer can be decomposed as the sum of four squares of
integers. For example:

23 = 3² + 3² + 2² + 1²
1 = 1² + 0² + 0² + 0²

In some cases, there may be multiple valid alternatives. Consider the case of number 59:

59 = 7² + 3² + 1² + 0²
59 = 5² + 5² + 3² + 0²
59 = 5² + 4² + 3² + 3²

Your task is to write a program that returns the decomposition into 4 squares of a number up to
999.999, choosing the decomposition where the highest number is the largest first square. For
example, in the previous case, the program would return the first option (59 = 7² + 3² + 1² + 0²). If a
number has several alternatives with the same highest square, the option with the second highest
square should be chosen. Consider the case of number 43:

43 = 4² + 3² + 3² + 3²
43 = 5² + 3² + 3² + 0²
43 = 5² + 4² + 1² + 1²

The third option (43 = 5² + 4² + 1² + 1²) should be chosen (because 5 is the first squared integer for both
solutions, but then 4 is the second squared integer only for the third solution and is greater than 3,
which is the second squared integer for the second solution).

Input

A single number from 1 to 999999.

Output

The decomposition of the input number in squared integer integers following the Lagrange Four
Square Theorem.

67

Valencia 2025

Example 1

Input

1

Output

1 = 1^2 + 0^2 + 0^2 + 0^2

Example 2

Input

59

Output

59 = 7^2 + 3^2 + 1^2 + 0^2

Example 3

Input

23

Output

23 = 3^2 + 3^2 + 2^2 + 1^2

Python

import math

def factoring_lagrange(n):

 for a in range(int(math.sqrt(n)), -1, -1):

 for b in range(a, -1, -1):

 for c in range(b, -1, -1):

 remaining = n - a*a - b*b - c*c

 if remaining >= 0:

 d = int(math.sqrt(remaining))

 if a*a + b*b + c*c + d*d == n:

 print(f"{n} = {a}^2 + {b}^2 + {c}^2 + {d}^2")

 return

 print("No decomposition found.")

def main():

 number = int(input())

 if 1 <= number <= 999999:

 factoring_lagrange(number)

 else:

 print("Number must be between 1 and 999999.")

if __name__ == "__main__":

 main()

68

Valencia 2025

28 Ready Player One
17 points

Introduction

Directed by Steven Spielberg in 2018, this movie is based on Ernest Cline’s best-selling book. Set in
2045, it features a virtual reality world called the OASIS, where players hunt for hidden Easter Eggs
by solving pop culture puzzles. With over 120 character cameos, it offers endless rewatch value.

For example, did you notice the Ready Player One logo is a maze starting at the “R” and ending at the
center of the “O” where the Golden Easter Egg lies?

Would you like to solve a maze? Consider a two-dimensional maze defined as a matrix of numbers
like this:

1 1 1 1 1 1 1 1 0 1
1 3 1 0 1 0 0 0 0 1
1 0 1 0 0 0 1 1 0 1
1 0 1 1 1 1 1 0 0 1
1 0 1 0 0 0 0 0 0 1
1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1
1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 1 1 2 1

where 0 is a safe place to walk, 1 is a maze wall, 2 represents the start point and 3 is the finish point.

There are four possible directions (N = North, E = East, W = West and S = South) to move inside the
maze. You will receive a list of directions to follow. Like in a videogame, if you reach the finish point
before exhausting all the received moves, you “Win”. But if you collide with any wall or go beyond the
maze border, you “Lose”. And if you remain in the maze after using all the received moves, you are
“Lost”. Can you code a program that, given a maze and a list of directions, checks the outcome of
following the list of direction moves?

69

Valencia 2025

Input

The input is a matrix of n rows and m columns, with each row on a separate line. The matrix ends with
a line containing a single character ‘#’. The input ends with a line with containing the list of direction
moves.

Output

The output prints the results of following the direction moves inside the maze: win, lose or lost.

Example 1 Example 2

Input

1 1 1 1 1 1 1 1 0 1
1 3 1 0 1 0 0 0 0 1
1 0 1 0 0 0 1 1 0 1
1 0 1 1 1 1 1 0 0 1
1 0 1 0 0 0 0 0 0 1
1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1
1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 1 1 2 1

N E E

Input

1 1 1 1 1 1 1 1 0 1
1 3 1 0 1 0 0 0 0 1
1 0 1 0 0 0 1 1 0 1
1 0 1 1 1 1 1 0 0 1
1 0 1 0 0 0 0 0 0 1
1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1
1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 1 1 2 1

N N N E

Output

Lose

Output

Lost

Example 3

Input

1 1 1 1 1 1 1 1 0 1
1 3 1 0 1 0 0 0 0 1
1 0 1 0 0 0 1 1 0 1
1 0 1 1 1 1 1 0 0 1
1 0 1 0 0 0 0 0 0 1
1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1
1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 1 1 2 1

N W W W N N N N W W S S S S W W N N N N N N N

Output

Win

70

Valencia 2025

Python

def read_maze():

 maze = []

 while True:

 row = input().strip()

 if row == '#':

 break

 maze.append(list(map(int, row.split())))

 return maze

def read_direction_moves():

 return list(map(str, input().split()))

def look_for_start_point(maze):

 for i in range(len(maze)):

 for j in range(len(maze[i])):

 if maze[i][j] == 2:

 return (i, j)

Main program

result = ""

Read the maze

maze = read_maze()

Read the direction moves

direction_moves = read_direction_moves()

Get start point in the maze

pos = look_for_start_point(maze)

Follow the direction steps from the start point

for move in direction_moves:

 # Apply the move

 if move == 'N':

 pos = (pos[0] - 1, pos[1])

 elif move == 'S':

 pos = (pos[0] + 1, pos[1])

 elif move == 'E':

 pos = (pos[0], pos[1] + 1)

 elif move == 'W':

 pos = (pos[0], pos[1] - 1)

 # Check if the move arrived to the finish point

 if maze[pos[0]][pos[1]] == 3:

 result = "Win"

71

Valencia 2025

 break

 # Check if the move arrived to a wall

 if maze[pos[0]][pos[1]] == 1:

 result = "Lose"

 break

If the result is empty, the player is lost in the maze

if result == "":

 result = "Lost"

print(result)

72

Valencia 2025

29 MineSweeper
19 points

Introduction

Have you ever played Minesweeper? It is a classic Windows game that tests the player's logical

thinking skills.

The objective of the game is to uncover all the squares that do not contain mines without triggering

any explosions by clicking on a square with a mine underneath. The locations of the mines are

unknown and must be discovered through logical deduction. Clicking on the game board reveals the

content beneath the chosen square or squares (a large number of blank squares can be uncovered

at once if they are adjacent to each other).

Some squares are blank, while others contain numbers (ranging from 1 to 8). Each number

represents the number of mines adjacent to that square. To avoid triggering a mine, you can mark

the location of a suspected mine by right-clicking on the square. The game is won when all the empty

squares have been uncovered without hitting a mine. Any remaining mines not flagged by the player

are automatically marked by the computer. However, if the player makes a mistake and clicks on a

mine, the game is lost. In this case, if the player mistakenly marks a safe square, it will appear either

with a red "X" covering the mine (indicating that it is safe), or simply with the red "X" (also showing that

it is safe).

Very well, all this is the theory. Now, you are tasked with implementing it in a way that takes standard

input to define an 8x8 board. The board will contain 10 mines, and three positions will be specified

where the player clicks. Your program should output the situation of the board after those three

clicks or display "BUMMM" if a mine was clicked.

Input

The input consists of 9 lines. The first 8 are the board, the ninth are the 3 clicked positions. The
possible characters of the board are “_” for a square without bomb and “O” for a square with bomb.
Then the ninth line will be 3 positions of the board X,Y separated by semicolon which is where the
user will click.

Output

The program should calculate where the user's attempts fall. There are several options:
• If any of the 3 rolls has landed on a bomb, the output will be BUMMM.
• If a roll lands on a square adjacent (horizontally, vertically or diagonally) to a bomb, the

number of bombs around it will be displayed.
• If a roll falls on a square with no adjacent bombs, it will open the hole by clearing the squares

around it that have no adjacent bombs.
And show the situation of the board after those three rolls.

73

Valencia 2025

The following image shows the Minesweeper board referenced over an X,Y axis:

Example 1 Example 2 Example 3 Example 4

Input

_ _ _ _ _ _ O _

_ O _ _ _ _ _ _

_ _ _ _ O _ _ _

_ _ _ O _ _ _ _

O _ _ _ _ _ _ O

_ O _ O _ _ _ _

_ _ O _ _ O _ _

_ _ _ _ _ _ _ _

4,1; 7,3; 8,8

Input

_ _ _ _ _ _ O _

_ O _ _ _ _ _ _

_ _ _ _ O _ _ _

_ _ _ O _ _ _ _

O _ _ _ _ _ _ O

_ O _ O _ _ _ _

_ _ O _ _ O _ _

_ _ _ _ _ _ _ _

3,3; 5,5; 1,1

Input

_ _ _ _ _ _ O _

_ O _ _ _ _ _ _

_ _ _ _ O _ _ _

_ _ _ O _ _ _ _

O _ _ _ _ _ _ O

_ O _ O _ _ _ _

_ _ O _ _ O _ _

_ _ _ _ _ _ _ _

5,5; 4,1; 1,4

Input

_ _ _ _ _ _ O _

_ O _ _ _ _ _ _

_ _ _ _ O _ _ _

_ _ _ O _ _ _ _

O _ _ _ _ _ _ O

_ O _ O _ _ _ _

_ _ O _ _ O _ _

_ _ _ _ _ _ _ _

7,1; 3,3; 1,1

Output

_ _ 1 1 O _

_ O 1 1 1 2 1 1

_ _ _ _ O 1

_ _ _ O _ 1 1 1

O _ _ _ _ _ _ O

_ O _ O _ _ 2 1

_ _ O _ _ O 1

_ _ _ _ _ _ 1

Output

1 _ _ _ _ _ O _

_ O _ _ _ _ _ _

_ _ 2 _ O _ _ _

_ _ _ O _ _ _ _

O _ _ _ 2 _ _ O

_ O _ O _ _ _ _

_ _ O _ _ O _ _

_ _ _ _ _ _ _ _

Output

_ _ 1 1 O _

_ O 1 1 1 2 _ _

_ _ _ _ O _ _ _

1 _ _ O _ _ _ _

O _ _ _ 2 _ _ O

_ O _ O _ _ _ _

_ _ O _ _ O _ _

_ _ _ _ _ _ _ _

Output

BUMMM

Y

X

74

Valencia 2025

75

Valencia 2025

Python

def imprimir_tablero(tablero):

 """Función para imprimir el tablero de forma legible."""

 for fila in tablero:

 print(" ".join(fila))

def contar_minas_adyacentes(tablero, x, y):

 """Cuenta cuántas minas están alrededor de la casilla (x, y)."""

 direcciones = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0),

(1, 1)]

 mina_count = 0

 for dx, dy in direcciones:

 nx, ny = x + dx, y + dy

 if 0 <= nx < 8 and 0 <= ny < 8 and tablero[nx][ny] == 'O':

 mina_count += 1

 return mina_count

def revelar_casilla(tablero, x, y, revelado):

 """Revela la casilla (x, y) y todas las casillas adyacentes vacías sin minas

adyacentes."""

 if revelado[x][y] != '_':

 return

 mina_count = contar_minas_adyacentes(tablero, x, y)

 if mina_count > 0:

 tablero[x][y] = str(mina_count)

 else:

 tablero[x][y] = ' '

 direcciones = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1,

0), (1, 1)]

 for dx, dy in direcciones:

 nx, ny = x + dx, y + dy

 if 0 <= nx < 8 and 0 <= ny < 8 and tablero[nx][ny] == '_' and

revelado[nx][ny] == '_':

 revelar_casilla(tablero, nx, ny, revelado)

def main():

 # Leer el tablero de 8x8

 tablero = [input().split() for _ in range(8)]

 # Leer las posiciones de los clics

 clics = input().split(";")

 # Convertir las posiciones a tuplas de enteros

 clics = [tuple(map(int, clic.split(","))) for clic in clics]

76

Valencia 2025

 # Crear una copia del tablero para marcar las casillas reveladas

 revelado = [['_'] * 8 for _ in range(8)]

 # Procesar los clics

 for y, x in clics:

 x -= 1 # Ajustar índices para que empiecen en 0

 y -= 1 # Ajustar índices para que empiecen en 0

 if tablero[x][y] == 'O':

 print("BUMMM")

 return

 # Si es una casilla vacía, revelamos la casilla

 revelar_casilla(tablero, x, y, revelado)

 # Imprimir el estado final del tablero

 imprimir_tablero(tablero)

if __name__ == "__main__":

 main()

77

Valencia 2025

30 Time Corridors
30 points

Introduction

Walking through the treacherous corridors of an ancient Egyptian pyramid you realize that these
corridors are not just any ordinary paths; they span across three dimensions of space and one
dimension of time. Your mission is to write a program to help you find the shortest path through this
complex labyrinth, keeping in mind that time only moves forward.

In this adventure, you can change your speed while moving through the pyramid. This means that
within a specific time slice, you can move as much as you want through the 3D space or even stay
still before jumping to the next time slice. However, diagonal movement is not allowed, neither in
space nor in time. You need to find a solution that requires the fewest movements in space, there
may be multiple correct solutions (the system will check if the solution is valid).

Input

The first line will be the size of the space-time of the corridors inside our pyramid: Nx, Ny, Nz, Nt, all of
them are positive integers and start at 0. For example, if Nx = 2, possible x positions are 0, and 1.

The second line is the starting point: Sx, Sy, Sz, St. Notice that St will always be 0, the start of time.

The third line is the ending point: Ex, Ey, Ez, Et where Et = Nt – 1, the end of time.

After these lines, there are Nx · Ny · Nz lines. Each line starts with 3 numbers that are the x, y, z
coordinates of one point in space, followed by Nt values representing the evolution in time of this
point in the time corridors. There are two possible values: a letter X for a wall you can't cross or a
greater-than sign (>) meaning that is possible to move forward.

Output

Output will be composed by several lines with steps followed by the path through space-time in x, y,
z, t coordinates and a final line with the total number of 3D (x,y,z) spaces crossed.

78

Valencia 2025

Example

Input Output 1 Output 2 (Alternative solution)

3 3 3 4

0 0 0 0

2 2 2 3

0 0 0 >XX>

0 0 1 >X>>

0 0 2 >X>>

0 1 0 >XX>

0 1 1 >X>>

0 1 2 >>>>

0 2 0 >>X>

0 2 1 >X>>

0 2 2 >>>>

1 0 0 >X>>

1 0 1 >X>>

1 0 2 >>>>

1 1 0 >X>>

1 1 1 >X>>

1 1 2 >>>>

1 2 0 >>>>

1 2 1 >X>>

1 2 2 >>>>

2 0 0 >>>>

2 0 1 >X>>

2 0 2 >>>>

2 1 0 >X>>

2 1 1 >X>>

2 1 2 >>>>

2 2 0 >>>>

2 2 1 >X>>

2 2 2 >>>>

0 0 0 0

1 0 0 0

2 0 0 0

2 0 0 1

2 0 0 2

2 0 0 3

2 1 0 3

2 2 0 3

2 2 1 3

2 2 2 3

7

0 0 0 0

1 0 0 0

2 0 0 0

2 1 0 0

2 2 0 0

2 2 1 0

2 2 2 0

2 2 2 1

2 2 2 2

2 2 2 3

7

79

Valencia 2025

Example 2

Input Output

2 3 2 5

1 2 0 0

1 0 1 4

0 0 0 X>XXX

0 0 1 X>>X>

0 1 0 XXXXX

0 1 1 XX>>X

0 2 0 X>XXX

0 2 1 X>>X>

1 0 0 XXX>X

1 0 1 XX>>>

1 1 0 X>XXX

1 1 1 XX>XX

1 2 0 >>X>X

1 2 1 >>XX>

1 2 0 0

1 2 0 1

0 2 0 1

0 2 1 1

0 2 1 2

0 1 1 2

1 1 1 2

1 0 1 2

1 0 1 3

1 0 1 4

6

Python

import sys

from collections import deque

class Pos:

 def __init__(self, x, y, z, t, cube, parent=None):

 self.x = x

 self.y = y

 self.z = z

 self.t = t

 self.cube = cube

 self.parent = parent

 def clone(self):

 return Pos(self.x, self.y, self.z, self.t, self.cube, self)

def valid_position(n, X, Y, Z):

 if n.x < 0 or n.x >= X or n.y < 0 or n.y >= Y or n.z < 0 or n.z >= Z:

 return False

 elif n.cube[n.x][n.y][n.z] == '>':

 return True

 else:

80

Valencia 2025

 return False

def print_solution(c):

 path = []

 p = c

 while p is not None:

 path.append(p)

 p = p.parent

 path.reverse()

 stepsCount = 1

 i = 0

 for p in path:

 print(f"{p.x} {p.y} {p.z} {p.t}")

 if i > 0:

 if p.x != path[i- 1].x or p.y != path[i - 1].y or p.z != path[i -

1].z:

 stepsCount = stepsCount + 1

 i = i + 1

 print(stepsCount)

def move(c, X, Y, Z, T, Ex, Ey, Ez, Et, timeline, moves):

 c.cube[c.x][c.y][c.z] = 'v'

 if c.x == Ex and c.y == Ey and c.z == Ez and c.t == Et:

 print_solution(c)

 sys.exit(0)

 if c.t + 1 < T:

 n = c.clone()

 n.t += 1

 n.cube = timeline[n.t]

 if valid_position(n, X, Y, Z):

 n.cube[n.x][n.y][n.z] = 'a'

 moves.append(n)

 for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1),

(0, 0, -1)]:

 n = c.clone()

 n.x += dx

 n.y += dy

 n.z += dz

 if valid_position(n, X, Y, Z):

 n.cube[n.x][n.y][n.z] = 'a'

 moves.append(n)

def main():

81

Valencia 2025

 # Read input

 input_data = sys.stdin.read().split()

 idx = 0

 X = int(input_data[idx])

 idx += 1

 Y = int(input_data[idx])

 idx += 1

 Z = int(input_data[idx])

 idx += 1

 T = int(input_data[idx])

 idx += 1

 Sx = int(input_data[idx])

 idx += 1

 Sy = int(input_data[idx])

 idx += 1

 Sz = int(input_data[idx])

 idx += 1

 St = int(input_data[idx])

 idx += 1

 Ex = int(input_data[idx])

 idx += 1

 Ey = int(input_data[idx])

 idx += 1

 Ez = int(input_data[idx])

 idx += 1

 Et = int(input_data[idx])

 idx += 1

 # Read timeline

 timeline = []

 for _ in range(T):

 timeline.append([[['>'] * Z for _ in range(Y)] for _ in range(X)])

 for _ in range(X * Y * Z):

 x = int(input_data[idx])

 idx += 1

 y = int(input_data[idx])

 idx += 1

 z = int(input_data[idx])

 idx += 1

 seq = input_data[idx]

 idx += 1

 for t in range(T):

 timeline[t][x][y][z] = seq[t]

 # Start search from the initial position

82

Valencia 2025

 s = Pos(Sx, Sy, Sz, St, timeline[St])

 # The use of a deque and the popleft method indicates that the search is

 # performed in a BFS manner, exploring all possible moves at the current

 # depth before moving to the next depth level.

 moves = deque([s])

 # Breadth First Search (as soon as we find the Exit point for the first

time,

 # we know it's the shortest path in number of steps)

 while moves:

 move(moves.popleft(), X, Y, Z, T, Ex, Ey, Ez, Et, timeline, moves)

if __name__ == "__main__":

 main()

